裝載機(jī)工作裝置性能分析及其綜合優(yōu)化設(shè)計(jì)
本文選題:工作裝置 + 性能分析; 參考:《吉林大學(xué)》2011年碩士論文
【摘要】:過(guò)去由于缺乏現(xiàn)代設(shè)計(jì)理論和方法,人們靠經(jīng)驗(yàn)手工計(jì)算、繪圖,設(shè)計(jì)帶有一定的盲目性,設(shè)計(jì)周期長(zhǎng)、效率低,且對(duì)樣機(jī)依賴性較大,難以滿足市場(chǎng)對(duì)裝載機(jī)產(chǎn)品系列化、多樣化,以及產(chǎn)品快速更新?lián)Q代的要求。工作裝置是裝載機(jī)的執(zhí)行機(jī)構(gòu),工作裝置的設(shè)計(jì)是裝載機(jī)設(shè)計(jì)的最重要工作內(nèi)容之一。工作裝置性能的優(yōu)劣,直接影響到裝載機(jī)整機(jī)工作性能、效率、使用成本,乃至在市場(chǎng)上的競(jìng)爭(zhēng)力和占有率。 為進(jìn)一步提高ZL50G型裝載機(jī)整機(jī)的工作性能和作業(yè)效率,本文在進(jìn)行運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)仿真研究的基礎(chǔ)上,對(duì)ZL50G型裝載機(jī)的工作裝置進(jìn)行了優(yōu)化設(shè)計(jì),并通過(guò)有限元解析和實(shí)驗(yàn)驗(yàn)證對(duì)優(yōu)化設(shè)計(jì)的結(jié)果進(jìn)行了驗(yàn)證。 本文的主要工作內(nèi)容和成果包括: (1)對(duì)國(guó)內(nèi)外裝載機(jī)及工作裝置設(shè)計(jì)研究的現(xiàn)狀以及今后的發(fā)展趨勢(shì)進(jìn)行了綜述,根據(jù)目前裝載機(jī)工作裝置設(shè)計(jì)研究者存在的問(wèn)題,提出了本研究的目的和工作任務(wù); (2)對(duì)裝載機(jī)工作裝置——反轉(zhuǎn)六連桿機(jī)構(gòu)的結(jié)構(gòu)、特點(diǎn),設(shè)計(jì)參數(shù)、性能指標(biāo),典型作業(yè)工況、設(shè)計(jì)要求、設(shè)計(jì)方法等進(jìn)行了概述。 (3)建立了工作裝置的ADAMS仿真模型,并在相同的公共約束下,對(duì)設(shè)計(jì)變量對(duì)性能指標(biāo)的影響規(guī)律進(jìn)行了仿真研究:最大收斗角及其位置,一般位于動(dòng)臂平伸及上限位置之間;連桿機(jī)構(gòu)最大傳力比出現(xiàn)在地面位置附近;最小值一處出現(xiàn)在下限收斗位置,另一處出現(xiàn)在上限卸料位置;動(dòng)臂油缸的最大單位舉升力矩在地面位置附近;鏟斗和拉桿間傳動(dòng)角最大值、最小值分別出現(xiàn)在下限收斗位置附近及上限卸料位置;轉(zhuǎn)斗油缸最小結(jié)構(gòu)長(zhǎng)度一般位于下限收斗位置及動(dòng)臂平伸位置之間;從定量及定性兩方面,對(duì)工作裝置的平動(dòng)性、動(dòng)力性、卸料性、傳動(dòng)性等性能,進(jìn)行了單參數(shù)設(shè)計(jì)變量及多參數(shù)設(shè)計(jì)變量的靈敏度分析,從仿真曲線可以看出,當(dāng)設(shè)計(jì)變量小范圍內(nèi)變動(dòng)時(shí),性能變化趨勢(shì)是線性的。在上述研究的基礎(chǔ)上,對(duì)LW500K裝載機(jī)的工作裝置進(jìn)行了綜合優(yōu)化設(shè)計(jì)。 (4)利用ANSYS軟件對(duì)優(yōu)化設(shè)計(jì)后的LW500K工作裝置有限元數(shù)值解析,在正載及偏載兩種工況下分析了動(dòng)臂的應(yīng)力情況,研究結(jié)果表明偏載鏟掘工況是動(dòng)臂失效的主要原因;相對(duì)于參考樣機(jī),每臺(tái)整機(jī)動(dòng)臂板的重量由844kg降低到776kg,并聯(lián)合國(guó)家工程機(jī)械質(zhì)量監(jiān)督檢驗(yàn)中心,對(duì)其進(jìn)行了型式試驗(yàn)及1000小時(shí)強(qiáng)化試驗(yàn)。 有限元分析和試驗(yàn)結(jié)果表明,經(jīng)優(yōu)化設(shè)計(jì)后的LW500K裝載機(jī)的工作性能及作業(yè)效率得到了明顯提升,動(dòng)臂板輕量化設(shè)計(jì)是可行的。
[Abstract]:In the past, because of the lack of modern design theory and method, people rely on experience in manual calculation, drawing, design with certain blindness, long design cycle, low efficiency, and dependence on prototype, so it is difficult to meet the market series of loader products. Diversification, as well as rapid product upgrading requirements. The working device is the executive mechanism of the loader, and the design of the working device is one of the most important work contents of the loader design. The performance of the working device has a direct impact on the performance, efficiency, use cost, and even the competitiveness and share of the loader in the market. In order to further improve the working performance and efficiency of the ZL50G loader, this paper optimizes the design of the working device of the ZL50G loader on the basis of kinematics and dynamics simulation. The results of optimization design are verified by finite element analysis and experimental verification. The main contents and achievements of this paper include: 1) the present situation and development trend of the design of loaders and their working devices at home and abroad are summarized, and the purpose and task of this study are put forward according to the problems existing in the design of loader working devices at present; The structure, characteristics, design parameters, performance indexes, typical operating conditions, design requirements and design methods of the six-bar reverse linkage mechanism of the loader are summarized. (3) the ADAMS simulation model of the working device is established. Under the same common constraints, the influence of the design variables on the performance index is simulated. The maximum bucket angle and its position are generally between the upper and lower arm positions. The maximum transfer force ratio of the linkage mechanism appears near the ground position, the minimum value appears in the lower limit bucket position, the other in the upper limit discharge position, the maximum unit lift torque of the arm oil cylinder is near the ground position, and the maximum unit lift torque of the arm oil cylinder is near the ground position. The maximum transmission angle between the bucket and the pull rod, the minimum value appears near the lower limit bucket position and the upper limit discharge position respectively; the minimum structure length of the rotary bucket oil cylinder is generally between the lower limit bucket position and the moving arm flat extension position; from the quantitative and qualitative aspects, The sensitivity analysis of single parameter design variable and multi parameter design variable is carried out for the performance of the working device such as translational, dynamic, unloading and transmission. From the simulation curve, it can be seen that when the design variable changes in a small range, the sensitivity of the single parameter design variable and the multi parameter design variable are analyzed. The performance trend is linear. Based on the above research, the working device of LW500K loader is optimized. 4) the finite element numerical analysis of the optimized LW500K working device is made by using ANSYS software, and the stress of the arm is analyzed under both positive and eccentric loads. The results show that the main reason for the failure of the arm is the excavating condition of the load shovel. Compared with the reference prototype, the weight of the whole plate is reduced from 844kg to 776kg, and combined with the National Construction Machinery quality Supervision and Inspection Center, the type test and 1000 hours intensive test are carried out. The finite element analysis and experimental results show that the performance and efficiency of the LW500K loader have been improved obviously after the optimized design, and the lightweight design of the moving arm plate is feasible.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH243
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊國(guó)平;裝載機(jī)新型工作裝置設(shè)計(jì)的理論探討[J];長(zhǎng)沙交通學(xué)院學(xué)報(bào);1999年04期
2 楊成康;裝載機(jī)工作裝置連桿機(jī)構(gòu)設(shè)計(jì)的解析法[J];工程機(jī)械;1980年04期
3 王碩哲 ,陳超;鉸接式裝載機(jī)車架剛度強(qiáng)度的計(jì)算[J];工程機(jī)械;1987年09期
4 陳文坤,諸文農(nóng);裝載機(jī)工作裝置收斗穩(wěn)定性分析[J];工程機(jī)械;1992年10期
5 何建偉,郭文華,李銀風(fēng),張愛(ài)武,何紅霞;銷軸彎曲疲勞強(qiáng)度的試驗(yàn)研究[J];工程機(jī)械;2003年04期
6 夏兆沂;趙鵬;張濤;;裝載機(jī)工作裝置特性曲線實(shí)用問(wèn)題分析[J];工程機(jī)械;2009年02期
7 王國(guó)彪;國(guó)外輪式裝載機(jī)技術(shù)的發(fā)展現(xiàn)狀[J];工程機(jī)械與維修;2001年03期
8 遲永濱,王勁松;裝載機(jī)工作裝置優(yōu)化設(shè)計(jì)的方法與策略[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年06期
9 楊成康,張鐵柱;裝載機(jī)工作裝置設(shè)計(jì)變量對(duì)性能的影響[J];吉林工業(yè)大學(xué)學(xué)報(bào);1989年01期
10 戴文躍,梁昊;裝載機(jī)工作裝置的動(dòng)力學(xué)仿真與綜合優(yōu)化設(shè)計(jì)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2004年04期
相關(guān)碩士學(xué)位論文 前6條
1 申文清;裝載機(jī)工作裝置的虛擬優(yōu)化設(shè)計(jì)及有限元分析[D];吉林大學(xué);2005年
2 霍巖;ZL80輪式裝載機(jī)工作裝置仿真優(yōu)化分析[D];吉林大學(xué);2006年
3 羅文水;基于ADAMS的某跑車操縱穩(wěn)定性和制動(dòng)性仿真分析及優(yōu)化[D];湖南大學(xué);2007年
4 寧俏俏;裝載機(jī)鏟掘作業(yè)軌跡的自適應(yīng)控制仿真研究[D];吉林大學(xué);2008年
5 戴洪光;基于ADAMS平臺(tái)的柔性體仿真理論的若干研究[D];合肥工業(yè)大學(xué);2008年
6 萬(wàn)燕波;基于高卸狀態(tài)下ZL50G裝載機(jī)工作裝置作業(yè)運(yùn)動(dòng)特性研究[D];重慶交通大學(xué);2009年
,本文編號(hào):1892149
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1892149.html