電動叉車異步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)研究與設(shè)計
本文選題:異步電機(jī) + 直接轉(zhuǎn)矩 ; 參考:《東北大學(xué)》2012年碩士論文
【摘要】:隨著交流動力控制逐漸成為電動叉車的主要技術(shù),對電動叉車用交流驅(qū)動系統(tǒng)的要求也越來越高,精度高、響應(yīng)快、計算簡單永遠(yuǎn)都是電動機(jī)控制系統(tǒng)追求的目標(biāo)。直接轉(zhuǎn)矩控制(DTC)技術(shù)是繼矢量控制技術(shù)之后,一種新型高性能的交流調(diào)速傳動的控制技術(shù)。直接轉(zhuǎn)矩控制在定子坐標(biāo)系下計算和控制交流電機(jī)的轉(zhuǎn)矩,采用定子磁場定向控制,直接對逆變器的開關(guān)狀態(tài)進(jìn)行最佳的控制。它以其簡潔明了的結(jié)構(gòu),優(yōu)良的靜、動態(tài)性能,受到了廣泛的關(guān)注。 本文介紹了異步電機(jī)直接轉(zhuǎn)矩控制的基本原理,從異步電機(jī)數(shù)學(xué)模型入手,通過對逆變器開關(guān)狀態(tài)分析得到空間電壓矢量,給出了直接轉(zhuǎn)矩控制系統(tǒng)的基本結(jié)構(gòu),并對各工作單元進(jìn)行了介紹。根據(jù)磁通和轉(zhuǎn)矩自控制原理分析了空間電壓矢量的正確選擇方法。 通過對傳統(tǒng)直接轉(zhuǎn)矩控制系統(tǒng)中的轉(zhuǎn)矩脈動問題的深入分析,經(jīng)轉(zhuǎn)矩模型的推導(dǎo)分析影響轉(zhuǎn)矩脈動的主要因素。分別研究了基于傳統(tǒng)直接轉(zhuǎn)矩減少轉(zhuǎn)矩脈動途徑的特點(diǎn),并對改善低速性能做了相應(yīng)研究。本文提出了基于空間電壓矢量調(diào)制(SVPWM)的直接轉(zhuǎn)矩控制策略。通過仿真結(jié)果表明將空間矢量調(diào)制技術(shù)加入直接轉(zhuǎn)矩控制策略后,控制系統(tǒng)在保留傳統(tǒng)DTC動態(tài)性能的情況下,減小了轉(zhuǎn)矩脈動和電磁噪聲。該方案簡單可靠,觀測精度高。 本文采用功率MOSFET器件并聯(lián)方案,設(shè)計逆變器的主回路、驅(qū)動電路和緩沖電路,對緩沖電路及主回路電路進(jìn)行系統(tǒng)仿真及主回路和緩沖電路各參數(shù)進(jìn)行優(yōu)化。分析并聯(lián)的功率MOSFET的均流問題,對MOSFET管并聯(lián)均流進(jìn)行系統(tǒng)仿真,研究其均流特性。并設(shè)計以DSP為核心的控制電路和檢測電路實(shí)現(xiàn)低壓大電流逆變器實(shí)驗(yàn)平臺搭建。試驗(yàn)結(jié)果驗(yàn)證了SVPWM控制策略應(yīng)用到實(shí)際系統(tǒng)中的可行性。
[Abstract]:With the AC power control gradually becoming the main technology of electric forklift, the requirement of AC drive system for electric forklift is more and more high, the precision is high, the response is fast, and the simple calculation is always the goal of the motor control system. Direct torque Control (DTC) is a new type of high performance AC speed control technology after vector control. Direct torque control (DTC) is used to calculate and control the torque of AC motor in stator coordinate system. Stator flux oriented control is adopted to directly control the switching state of inverter. Because of its simple and clear structure, excellent static and dynamic performance, it has received wide attention. This paper introduces the basic principle of direct torque control (DTC) of asynchronous motor. Starting from the mathematical model of asynchronous motor, the space voltage vector is obtained by analyzing the switching state of the inverter, and the basic structure of the DTC system is given. Each work unit is introduced. According to the principle of flux and torque self-control, the correct selection method of space voltage vector is analyzed. By analyzing the torque ripple problem in the traditional direct torque control system, the main factors influencing the torque ripple are analyzed by the derivation of the torque model. The characteristic of reducing torque ripple based on traditional direct torque is studied, and the improvement of low speed performance is studied. A direct torque control strategy based on space voltage vector modulation (SVPWM) is proposed in this paper. The simulation results show that the torque ripple and electromagnetic noise of the control system can be reduced by adding the space vector modulation technology into the direct torque control strategy while retaining the dynamic performance of the traditional DTC. The scheme is simple and reliable, and the observation accuracy is high. In this paper, the main circuit, drive circuit and buffer circuit of the inverter are designed by using the parallel scheme of the power MOSFET device. The system simulation of the buffer circuit and the main circuit are carried out, and the parameters of the main circuit and the buffer circuit are optimized. The current sharing problem of parallel power MOSFET is analyzed, and the system simulation of parallel current sharing of MOSFET tube is carried out, and its current sharing characteristics are studied. The control circuit and detection circuit based on DSP are designed to realize the experiment platform of low voltage and large current inverter. The experimental results verify the feasibility of applying the SVPWM control strategy to the actual system.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李春卉;張海波;;電動叉車調(diào)速控制系統(tǒng)的發(fā)展[J];中國儲運(yùn);2008年10期
2 蔡文皓;劉庚;崔江霞;賀偉;;直接轉(zhuǎn)矩控制系統(tǒng)低速性能分析[J];電力電子技術(shù);2010年02期
3 胡學(xué)芝;;異步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)仿真及實(shí)驗(yàn)研究[J];電氣傳動自動化;2009年02期
4 劉剛;林都;任一峰;趙敏;;異步電機(jī)定子磁鏈觀測方法的改進(jìn)研究[J];電氣傳動;2010年08期
5 張令霞;張興華;;直接轉(zhuǎn)矩控制系統(tǒng)的Matlab建模與仿真[J];電氣傳動;2011年01期
6 葛小榮;;功率MOSFET并聯(lián)應(yīng)用[J];電子技術(shù)應(yīng)用;2010年05期
7 唐湘越;;基于Matlab/Simulink的直接轉(zhuǎn)矩控制仿真系統(tǒng)[J];光機(jī)電信息;2009年08期
8 余娟;李曉強(qiáng);余向陽;;功率MOSFET并聯(lián)均流仿真分析[J];信息技術(shù);2011年08期
9 姜洪訓(xùn);;基于TMS320F28335的異步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)研究[J];黃石理工學(xué)院學(xué)報;2010年06期
10 周偉;陳浩;莊圣賢;;異步電機(jī)直接轉(zhuǎn)矩控制的仿真研究[J];機(jī)電工程;2010年07期
,本文編號:1874478
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1874478.html