多面體裝配模型復(fù)合配置空間遞進(jìn)式生成方法
本文選題:裝配模型 + 變拓?fù)錂C(jī)構(gòu); 參考:《華中科技大學(xué)》2013年碩士論文
【摘要】:除了滿足力學(xué)等性能,機(jī)械系統(tǒng)需要實(shí)現(xiàn)預(yù)定的功能,這些功能包括由系統(tǒng)運(yùn)動(dòng)實(shí)現(xiàn)的行為功能。然而,在系統(tǒng)設(shè)計(jì)階段,一般的CAD模型能夠直接反映系統(tǒng)的組成與結(jié)構(gòu),卻不能直接表達(dá)系統(tǒng)模型在使用時(shí)的實(shí)際行為。對(duì)于復(fù)雜變拓?fù)錂C(jī)構(gòu)模型,設(shè)計(jì)者自己也很難全面預(yù)測(cè)模型的真實(shí)行為,如不同目標(biāo)位置間的可達(dá)性、運(yùn)動(dòng)不確定性等。所以,系統(tǒng)行為預(yù)測(cè)能幫助設(shè)計(jì)者及時(shí)發(fā)現(xiàn)并回避錯(cuò)誤設(shè)計(jì),優(yōu)化系統(tǒng)運(yùn)動(dòng)路徑等,從而成為正確實(shí)現(xiàn)模型預(yù)定功能及操作規(guī)劃的重要保證,可廣泛應(yīng)用于運(yùn)動(dòng)行為檢驗(yàn)、系統(tǒng)重構(gòu)及各類工程設(shè)計(jì)中。 對(duì)于機(jī)械裝配模型行為的研究,首先提出了復(fù)合配置空間(Composite ConfigurationSpace, CCS)的概念表示機(jī)械裝配系統(tǒng)行為。復(fù)合配置空間的兩個(gè)基本要素是配置參數(shù)及參數(shù)定義域。在運(yùn)動(dòng)幾何的基礎(chǔ)上,文中以面面接觸關(guān)系為依據(jù)嚴(yán)格定義了模型接觸狀態(tài)。接觸狀態(tài)反映模型所有零件間的接觸關(guān)系,繼而決定任意兩零件間的相對(duì)運(yùn)動(dòng)關(guān)系,從而對(duì)系統(tǒng)運(yùn)動(dòng)進(jìn)行參數(shù)化。系統(tǒng)行為分兩個(gè)層次,即參數(shù)在參數(shù)域內(nèi)的變化和參數(shù)域間的變換。兩個(gè)層次的參數(shù)變化均能引起接觸狀態(tài)轉(zhuǎn)換。當(dāng)參數(shù)在參數(shù)域內(nèi)變化時(shí),系統(tǒng)參數(shù)處于同一個(gè)連續(xù)配置空間,,其中一個(gè)區(qū)域?qū)?yīng)一個(gè)接觸狀態(tài),接觸狀態(tài)的變化確定參數(shù)定義域邊界。另外詳細(xì)介紹了參數(shù)在參數(shù)域間變換時(shí)配置空間的映射變換關(guān)系以及復(fù)合配置空間的性質(zhì)。 然后,面對(duì)CCS的自動(dòng)構(gòu)建問題,提出一種多面體裝配模型配置空間遞進(jìn)式生成方法。該方法對(duì)于多面體CAD裝配模型中某特定面面接觸狀態(tài),以一對(duì)接觸零件作為初始子裝配,以求解一個(gè)子裝配加入一個(gè)零件后的新子裝配的配置空間為循環(huán)體,逐次引入所有裝配零件直至完成整體裝配模型的配置空間求解。接著通過一定的人工交互進(jìn)一步求解所有接觸狀態(tài)下CCS。 最后,列舉了若干實(shí)例詳細(xì)說明了其裝配模型CCS求解步驟,說明了研究成果的可行性、有效性及適用性。
[Abstract]:In addition to meeting mechanical properties, mechanical systems need to perform predefined functions, including behavioral functions implemented by system motion. However, in the stage of system design, the general CAD model can directly reflect the composition and structure of the system, but can not directly express the actual behavior of the system model in use. It is difficult for the designer himself to predict the real behavior of the complex variable topological mechanism model, such as the reachability between different target locations, the uncertainty of motion, and so on. Therefore, system behavior prediction can help designers find and avoid the wrong design in time, optimize the system motion path, and become an important guarantee to realize the model predefined function and operation planning correctly, and can be widely used in motion behavior testing. System reconfiguration and all kinds of engineering design. To study the behavior of mechanical assembly model, the concept of Composite configuration Space (CCS) is proposed to represent the behavior of mechanical assembly system. The two basic elements of compound configuration space are configuration parameters and parameter domain. On the basis of kinematic geometry, the contact state of the model is strictly defined based on the surface contact relationship. The contact state reflects the contact relationship between all parts of the model, and then determines the relative motion relationship between any two parts, thus parameterizing the system motion. The system behavior is divided into two levels: the change of parameters in parameter domain and the transformation of parameter domain. The change of parameters at both levels can lead to the transition of contact state. When the parameters change in the parameter domain, the system parameters are in the same continuous configuration space, where one region corresponds to a contact state, and the boundary of the parameter domain is determined by the change of the contact state. In addition, the mapping transformation relation of configuration space and the properties of compound configuration space are introduced in detail. Then, in the face of the problem of automatic construction of CCS, a progressive generation method of configuration space for polyhedron assembly model is proposed. For a particular surface contact state in a polyhedron CAD assembly model, a pair of contact parts is used as the initial sub-assembly, and the configuration space of the new sub-assembly after a sub-assembly is solved is a circular body. All the assembly parts are introduced one by one until the configuration space of the whole assembly model is solved. Then the CCSs in all contact states are solved by a certain amount of manual interaction. Finally, some examples are given to illustrate the steps of solving the assembly model CCS in detail, and the feasibility, validity and applicability of the research results are illustrated.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TG95;TH112
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 余斌,劉繼紅,舒慧林;基于定性立體模型的產(chǎn)品可裝配/拆卸性分析[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2002年01期
2 李明浩;黃正東;;基于旋量理論的裝配模型中零件瞬時(shí)運(yùn)動(dòng)分析[J];機(jī)械科學(xué)與技術(shù);2008年10期
3 董雁,譚建榮,徐靜;面向概念設(shè)計(jì)的復(fù)雜結(jié)構(gòu)零件設(shè)計(jì)可重用方法[J];機(jī)械工程學(xué)報(bào);2005年01期
4 董雁,譚建榮,徐靜;面向概念設(shè)計(jì)的產(chǎn)品裝配結(jié)構(gòu)定性模型[J];機(jī)械工程學(xué)報(bào);2005年09期
5 黃正東;康葳蕤;彭?yè)P(yáng)平;;機(jī)械裝配模型的復(fù)合配置空間[J];機(jī)械工程學(xué)報(bào);2011年13期
6 康葳蕤;黃正東;彭?yè)P(yáng)平;;多點(diǎn)二次曲面接觸運(yùn)動(dòng)副的自由度方向識(shí)別方法[J];機(jī)械工程學(xué)報(bào);2012年01期
7 邵晨曦,白方周;定性仿真技術(shù)及應(yīng)用[J];系統(tǒng)仿真學(xué)報(bào);2004年02期
8 劉丙杰;胡昌華;蔡光斌;;半定量仿真綜述[J];系統(tǒng)仿真學(xué)報(bào);2006年09期
本文編號(hào):1858812
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1858812.html