旋轉唇形油封泵汲機理和散熱機理研究
本文選題:旋轉唇形油封 + 泵汲率; 參考:《重慶大學》2014年碩士論文
【摘要】:目前國內旋轉唇形油封的設計,主要采用傳統(tǒng)的經驗設計和粗略宏觀分析的方式,油封的密封性能在生產出來之前不可預見,只能通過實驗判斷產品合格與否,既費時又費力。人們對油封的研究不少,,但很少研究油封結構參數(shù)對油封密封性能和散熱的影響。本文針對這一研究現(xiàn)狀,利用有限元軟件建立安裝后旋轉唇形油封的二維軸對稱模型,得到油封唇口接觸寬度和接觸壓力分布,并結合理論分析的結果,分析重要參數(shù)對油封泵汲率和生熱量的影響;在此基礎上利用CFD軟件建立旋轉軸和油封唇口潤滑油的二維軸對稱模型,分析重要參數(shù)對油封唇口溫度分布的影響。 有限元模擬和理論分析結果表明,油封唇口柯西應力和接觸壓力最大處位于油封唇尖;由油封唇尖往空氣側和油側,柯西應力和接觸壓力減少很快。隨過盈量的增大,油封唇口的接觸寬度、泵汲率和生熱量均增加,而油封唇口最大接觸壓力先增加后減少。不同彈簧勁度系數(shù)下,油封唇口有相似的壓力分布;彈簧勁度系數(shù)的增大,使得油封簧后內徑減少;其對油封生熱量影響很大,而對泵汲率影響較小。彈簧中心與油封唇尖的軸向距離增大后,油封唇口接觸寬度和生熱量減少,而油封泵汲率則增加。隨空氣側唇角的增加,油封唇口接觸寬度和泵汲率均減少,而生熱量則緩慢增加。油封唇口的生熱量和泵汲率都隨軸轉速的增加而快速增加。 CFD模擬結果表明,旋轉唇形油封工作過程中溫度最高處集中在油封唇口,由唇口摩擦面到軸中心溫度逐漸降低;油封唇口的溫度最高,從唇口往兩側溫度逐漸降低;軸的溫度高于潤滑油的溫度,空氣側的溫度要高于潤滑油側的溫度。在軸轉速不變的情況下,油封唇口摩擦面最高溫度隨過盈量、彈簧勁度系數(shù)增加而增加,而隨空氣側唇角的增加緩慢減少;在其它條件不變的情況下,油封唇口的摩擦面最高溫度隨軸轉速的增加幾乎呈線性增加。
[Abstract]:At present, the domestic rotary lip seal design mainly adopts the traditional experience design and the rough macroscopic analysis way, the seal performance of the oil seal can not be predicted before the production, can only judge whether the product is qualified or not through the experiment, which is time-consuming and laborious. Many researches have been done on oil seal, but the influence of structure parameters on seal performance and heat dissipation has been seldom studied. In this paper, a two-dimensional axisymmetric model of rotating lip seal after installation is established by using finite element software. The contact width and contact pressure distribution are obtained, and the results of theoretical analysis are combined. Based on the analysis of the influence of important parameters on the swabbing rate and heat generation of the oil seal pump, a two-dimensional axisymmetric model of rotary shaft and oil seal lip lubricating oil was established by using CFD software, and the influence of important parameters on the temperature distribution of the oil seal lip was analyzed. The results of finite element simulation and theoretical analysis show that the maximum Cauchy stress and contact pressure are located at the tip of the oil seal, and the Cauchy stress and contact pressure decrease rapidly from the tip of the oil seal to the air side and the oil side. With the increase of interference volume, the contact width, pump swabbing rate and heat generation of the oil seal lip increase, while the maximum contact pressure of the oil seal lip increases first and then decreases. Under different spring stiffness coefficient, the oil seal lip has similar pressure distribution; the increase of spring stiffness coefficient reduces the inner diameter of oil seal spring; it has a great effect on the heat generation of oil seal, but has little effect on pump swabbing rate. When the axial distance between the spring center and the oil seal lip tip increases, the contact width and heat generation of the oil seal lip decrease, while the oil seal pump swabbing rate increases. With the increase of the air side lip angle, the contact width and pump swabbing rate of the oil seal lip decrease, while the heat generation increases slowly. The heat generation and pump swabbing rate of oil seal lip increased rapidly with the increase of shaft speed. CFD simulation results show that the highest temperature is concentrated on the lip of the rotary lip seal, and the temperature from the lip friction surface to the center of the shaft decreases gradually, the temperature of the oil seal lip is the highest, and the temperature from the lip to the two sides decreases gradually. The temperature of the shaft is higher than the temperature of the lubricating oil, and the temperature of the air side is higher than the temperature of the lubricating oil side. Under the condition of constant axial speed, the maximum temperature of the friction surface of the oil seal lip increases with the interference, the spring stiffness coefficient increases, but decreases slowly with the increase of the air side lip angle. The maximum temperature of friction surface of oil seal lip increases linearly with the increase of axial speed.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TH38
【參考文獻】
相關期刊論文 前10條
1 張佳佳;趙良舉;杜長春;蘇曉燕;吳莊俊;饒文姬;;唇形油封結構參數(shù)對摩擦面溫度的影響[J];合肥工業(yè)大學學報(自然科學版);2011年10期
2 趙良舉;蘇曉燕;杜長春;張佳佳;吳莊俊;趙向雷;;旋轉唇形油封泵吸效應及影響因素分析[J];合肥工業(yè)大學學報(自然科學版);2011年12期
3 趙良舉;張佳佳;杜長春;蘇曉燕;;唇形油封動態(tài)散熱仿真研究[J];計算機仿真;2011年11期
4 左正興,廖日東;12150柴油機橡膠密封圈的有限元分析[J];內燃機工程;1996年02期
5 于政武;影響骨架式橡膠油封動密封的因素及其對策[J];農業(yè)機械學報;1989年01期
6 吳莊俊;趙良舉;杜長春;洪玉意;李云飛;趙向雷;;結構參數(shù)對徑向唇形密封圈密封性能的影響研究[J];合肥工業(yè)大學學報(自然科學版);2012年11期
7 錢德森;;曲軸橡膠唇口油封的密封機理及其主要結構參數(shù)[J];內燃機工程;1984年02期
8 周瓊;李正美;唐建平;安琦;;唇形密封圈潤滑性能的數(shù)值模擬[J];華東理工大學學報(自然科學版);2012年01期
9 朱玉民;國內外橡膠骨架油封的現(xiàn)狀及發(fā)展趨勢[J];汽車研究與開發(fā);2000年02期
10 李建國;丁玉梅;楊衛(wèi)民;譚晶;;油封密封性能的有限元分析[J];潤滑與密封;2006年10期
本文編號:1844123
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1844123.html