2D數(shù)字閥的靜動態(tài)特性及死區(qū)非線性補償研究
本文選題:2D數(shù)字伺服閥 + 靜態(tài)特性。 參考:《浙江工業(yè)大學(xué)》2012年碩士論文
【摘要】:隨著電液控制系統(tǒng)的飛速的發(fā)展,數(shù)字閥作為電液控制系統(tǒng)中的重要組成元件,對其的研究越來越深入了。在國外,數(shù)字閥已成為系列化的產(chǎn)品,投入到生產(chǎn)中了,而國內(nèi)對數(shù)字閥的研究起步較晚,技術(shù)還很不成熟,因此本論文對2D數(shù)字閥的研究,在工程應(yīng)用中具有重要實際的意義以及理論價值。 本論文結(jié)合2D數(shù)字伺服閥,對其靜動態(tài)特性進行了實驗研究,結(jié)果表明,數(shù)字閥靜態(tài)工作時,閥芯轉(zhuǎn)角輸入與軸向位移輸出基本成線性;在動態(tài)工作下,閥的階躍響應(yīng)時間最快可達(dá)到8.2ms,在最大閥開口25%幅值下正弦信號輸入,幅頻特性為-3dB對應(yīng)的頻寬約為65Hz。但因數(shù)字閥的閥芯同閥口的正遮蓋所形成的流量死區(qū),對電液控制系統(tǒng)的性能和精度產(chǎn)生了不利的影響。本論文采用對輸入信號疊加顫振的方法,對數(shù)字閥的死區(qū)非線性進行補償,建立數(shù)字閥控系統(tǒng)的數(shù)學(xué)模型并對其仿真分析,形成理論的依據(jù),再搭建起實驗平臺,結(jié)果表明,對數(shù)字閥的輸入疊加高頻顫振信號,可以實現(xiàn)對死區(qū)非線性的補償。本文各章內(nèi)容如下: 第一章,介紹了數(shù)字閥的特點;并闡述了國內(nèi)外對數(shù)字閥研究;然后概述了非線性液壓系統(tǒng)和電液控制技術(shù);最后列出本課題的研究背景、意義和內(nèi)容。 第二章,對2D數(shù)字閥的三維模型的建立采用了基于CATIA環(huán)境下的模塊化設(shè)計。 第三章,建立了2D數(shù)字閥的數(shù)學(xué)模型,搭建2D數(shù)字閥特性的實驗平臺,對其靜動態(tài)特性進行了實驗研究。 第四章,對死區(qū)非線性的特性進行了數(shù)學(xué)分析,并且分析2D數(shù)字伺服閥死區(qū)非線性產(chǎn)生的原因,對顫振補償機理進行簡要的分析,建立了2D數(shù)學(xué)閥控液壓缸的數(shù)學(xué)模型,對接下來的實驗做準(zhǔn)備。搭建了死區(qū)非線性實驗平臺,對2D數(shù)字伺服閥的死區(qū)非線性以及其顫振補償進行了實驗的研究。分析實驗后得到的數(shù)據(jù),得出顫振補償?shù)膶嶒灲Y(jié)論。 第五章,針對本論文的研究內(nèi)容,進行了總結(jié),并對進一步的研究提出展望。
[Abstract]:With the rapid development of electro-hydraulic control system, digital valve, as an important component of electro-hydraulic control system, has been studied more and more deeply. In foreign countries, digital valve has become a series of products, put into production, but the domestic research on digital valve started late, the technology is still immature, so this paper studies 2D digital valve. It has important practical significance and theoretical value in engineering application. In this paper, the static and dynamic characteristics of 2D digital servo valve are studied experimentally. The results show that the valve core angle input and axial displacement output are basically linear when the digital valve works in static state. The step response time of the valve can be up to 8.2 Ms as fast as possible. The sinusoidal signal is input at the maximum opening of 25% amplitude. The amplitude-frequency characteristic of -3dB corresponds to the bandwidth of about 65 Hz. However, the dead zone of flow caused by the positive cover of the valve core and the valve opening of the digital valve has a negative effect on the performance and accuracy of the electro-hydraulic control system. In this paper, the method of superposition flutter of input signal is used to compensate the dead-time nonlinearity of digital valve, and the mathematical model of digital valve control system is established and simulated to form the theoretical basis, and the experimental platform is set up. The high frequency flutter signal can be added to the digital valve to compensate for the dead zone nonlinearity. The chapters of this paper are as follows: In the first chapter, the characteristics of digital valve are introduced, and the research on digital valve at home and abroad is described. Then, the nonlinear hydraulic system and electro-hydraulic control technology are summarized. Finally, the research background, significance and content of this subject are listed. In the second chapter, the 3D model of 2D digital valve is designed based on CATIA. In chapter 3, the mathematical model of 2D digital valve is established, the experimental platform of 2D digital valve is built, and the static and dynamic characteristics of 2D digital valve are studied experimentally. In chapter 4, the characteristics of dead zone nonlinearity are analyzed, and the causes of dead zone nonlinearity of 2D digital servo valve are analyzed, and the mechanism of flutter compensation is briefly analyzed, and the mathematical model of 2D mathematical valve controlled hydraulic cylinder is established. Prepare for the next experiment. The dead zone nonlinearity of 2D digital servo valve and its flutter compensation are studied experimentally. The experimental results of flutter compensation are obtained by analyzing the experimental data. The fifth chapter summarizes the research content of this paper, and puts forward the prospect of further research.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH137.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂宏慶,李著信,蘇毅,楊建勇;電液控制技術(shù)的現(xiàn)狀和發(fā)展趨勢[J];重慶工業(yè)高等?茖W(xué)校學(xué)報;1999年Z1期
2 李其朋,丁凡;電液伺服閥技術(shù)研究現(xiàn)狀及發(fā)展趨勢[J];工程機械;2003年06期
3 H.Murrenhoff,吳根茂;液壓控制技術(shù)發(fā)展趨勢──第1部分 元件與傳動裝置[J];工程設(shè)計;1997年03期
4 張學(xué)忱;張啟暉;范汝祥;徐杰;;利用關(guān)聯(lián)關(guān)系的標(biāo)準(zhǔn)件參數(shù)化設(shè)計方法[J];工程圖學(xué)學(xué)報;2010年01期
5 柯穎;王述英;;模塊化生產(chǎn)網(wǎng)絡(luò):一種新產(chǎn)業(yè)組織形態(tài)研究[J];中國工業(yè)經(jīng)濟;2007年08期
6 范林;王哲;;模塊化技術(shù)在飛機研制中的應(yīng)用[J];航空科學(xué)技術(shù);2010年03期
7 駱艷潔,劉延俊;新型壓力控制閥靜動態(tài)特性分析[J];機床與液壓;2001年01期
8 施光林,鐘廷修;高速電磁開關(guān)閥的研究與應(yīng)用[J];機床與液壓;2001年02期
9 黃卉,程順;電液比例技術(shù)發(fā)展趨勢微探[J];機床與液壓;2002年01期
10 李勝,俞浙青,阮健;2D氣動數(shù)字伺服閥[J];機床與液壓;2003年01期
相關(guān)碩士學(xué)位論文 前1條
1 王成賓;步進電機控制的液壓數(shù)字閥的建模與仿真研究[D];太原理工大學(xué);2006年
,本文編號:1828146
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1828146.html