天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

大流量插裝式伺服閥的設(shè)計(jì)與控制方法研究

發(fā)布時(shí)間:2018-04-27 19:00

  本文選題:插裝式伺服閥 + 參數(shù)匹配 ; 參考:《浙江大學(xué)》2013年博士論文


【摘要】:大流量插裝式伺服閥是很多重大機(jī)械裝備中電液控制系統(tǒng)的核心部件,譬如大型模鍛壓機(jī)、快鍛壓機(jī)、鋁合金壓鑄機(jī)等,目前很大程度上還依賴于進(jìn)口。在以往的研究中,關(guān)于插裝式伺服閥與實(shí)際應(yīng)用工況相匹配的參數(shù)設(shè)計(jì)方法、以及插裝式伺服閥控制器設(shè)計(jì)的研究較少,閥的性能潛力未能得到充分挖掘,性能進(jìn)一步提升受到制約。本文將圍繞上述兩大問題,通過理論建模、仿真分析、實(shí)驗(yàn)驗(yàn)證相結(jié)合的方法展開研究,主要內(nèi)容如下: 第一章,對大流量電液比例/伺服插裝式節(jié)流閥的實(shí)現(xiàn)原理及其工程應(yīng)用背景進(jìn)行闡述。在分析了國內(nèi)外相關(guān)技術(shù)研究現(xiàn)狀基礎(chǔ)上,提出了本文的主要研究內(nèi)容。 第二章,對插裝式伺服閥結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì)方法的研究。推導(dǎo)了與使用工況相匹配的主動式插裝伺服閥一系列結(jié)構(gòu)參數(shù)的設(shè)計(jì)公式,平衡各項(xiàng)結(jié)構(gòu)參數(shù)的相互制約關(guān)系。推導(dǎo)了主閥芯所受液壓力和液動力的理論公式和簡化計(jì)算公式,為先導(dǎo)控制腔的參數(shù)設(shè)計(jì)提供依據(jù),并為后續(xù)控制器的設(shè)計(jì)提供了負(fù)載模型。 第三章,對伺服比例閥的整體性建模研究。建立了電一機(jī)械轉(zhuǎn)換器的集中參數(shù)模型,體現(xiàn)了滯環(huán)、非線性電感等常見的電磁鐵非線性特征。建立了閥體機(jī)械運(yùn)動部件的模型,通過直接測量與間接估算確定了各主要參數(shù)值。根據(jù)實(shí)驗(yàn)擬合了穩(wěn)態(tài)液動力的數(shù)學(xué)模型。設(shè)計(jì)了開環(huán)和閉環(huán)兩種實(shí)驗(yàn)測試方法,驗(yàn)證了模型的有效性。通過零位處的線性化方法,獲取了閥的標(biāo)稱模型,得到其傳遞函數(shù)及狀態(tài)空間表達(dá)式,以及各主要參數(shù)的線性化參數(shù)值及變動范圍。 第四章,對伺服比例閥的非線性滑?刂品椒ㄑ芯。根據(jù)伺服比例閥的標(biāo)稱模型頻響曲線,分析了曲線上各漸近線方程所代表的動力學(xué)約束,推導(dǎo)了這些約束與閥模型參數(shù)間的函數(shù)式,以此作為后續(xù)滑?刂破髟O(shè)計(jì)的基礎(chǔ)。根據(jù)閥的各參數(shù)值和閥芯行程限制,采用了基于加加速度約束下、代表時(shí)間最優(yōu)階躍響應(yīng)的非線性滑模面,并據(jù)此設(shè)計(jì)了滑?刂葡到y(tǒng)。通過仿真和實(shí)驗(yàn)分別測試了伺服比例閥的閥芯位置閉環(huán)階躍響應(yīng)和頻率響應(yīng),并與閥原始配套的模擬PID控制器作了對比,從而驗(yàn)證了上述滑?刂破鞯男阅。 第五章,對伺服比例閥的改進(jìn)型滑?刂品椒ㄑ芯。針對第四章的非線性滑?刂破,分析了其不足之處,并提出了多項(xiàng)改進(jìn)方法。引入積分器以解決滑?刂浦蟹(wěn)態(tài)精度得不到保證的問題。提出了兩種速度前饋補(bǔ)償?shù)姆椒?以提高閥芯的軌跡跟蹤能力。采用了高/低壓電源切換技術(shù),進(jìn)一步提升閥的動態(tài)響應(yīng)。提出了對閥身自帶的LVDT位移傳感器改造的辦法,提取了閥芯運(yùn)動的位移、速度和加速度信號全狀態(tài)反饋信號,并成功應(yīng)用于滑?刂浦。設(shè)計(jì)了基于加速度和加加速度聯(lián)合約束下、代表時(shí)間最優(yōu)階躍響應(yīng)的非線性滑模面,并設(shè)計(jì)了相應(yīng)的滑?刂破,給出了應(yīng)用于實(shí)時(shí)控制中的實(shí)現(xiàn)準(zhǔn)則和計(jì)算流程,實(shí)現(xiàn)了不同負(fù)載下滑模狀態(tài)的穩(wěn)定性和顯著增強(qiáng)的抗負(fù)載擾動能力。 第六章,大流量插裝式伺服閥的非線性控制方法研究。針對先導(dǎo)級伺服比例閥的頻響遠(yuǎn)低于主級閥頻響的特點(diǎn),忽略主閥芯動態(tài),建立了插裝式伺服閥的簡化三階模型,并據(jù)此設(shè)計(jì)控制器。采用了基于模型補(bǔ)償?shù)聂敯艨刂坪头床娇刂品椒?backstepping)改造系統(tǒng)的動力學(xué)方程、配置系統(tǒng)的極點(diǎn);采用基于Lyapunov函數(shù)和非線性映射的自適應(yīng)算法,對閥系數(shù)、泄漏等參量進(jìn)行自適應(yīng)估計(jì),提高模型補(bǔ)償?shù)木_性。通過仿真分析和實(shí)驗(yàn)對比,驗(yàn)證了上述控制算法的性能。 第七章,對全文的主要研究工作進(jìn)行了總結(jié)。闡述了主要研究結(jié)論和創(chuàng)新點(diǎn),并對課題的后續(xù)研究提出了展望。
[Abstract]:The large flow cartridge servo valve is the core component of the electro-hydraulic control system in many important mechanical equipment, such as large die forging press, fast forging press, aluminum alloy die-casting machine, and so on. At present, it is largely dependent on the import. In the past research, the parameter design method of the matching servo valve and the actual application condition, and the insert in the past research The design of the servo valve controller is less researched, the performance potential of the valve has not been fully excavated and the performance is further restricted. This paper will focus on the above two major problems, through the method of theoretical modeling, simulation analysis and experimental verification. The main contents are as follows:
In the first chapter, the principle and engineering application background of large flow electro-hydraulic proportional / servo throttle valve are expounded. The main research contents of this paper are put forward on the basis of the analysis of the current research status of related technologies at home and abroad.
In the second chapter, the optimization design method for the structural parameters of the plug servo valve is studied. The design formula of a series of structural parameters of the active cartridge servo valve which is matched with the working condition is derived, and the interaction between the parameters of the structural parameters is balanced. The theoretical formula and simplified formula for the hydraulic pressure and the hydrodynamic force of the main valve core are derived, and the simplified formula is derived. The parameter design of the pilot control chamber provides the basis and provides a load model for the design of the subsequent controller.
In the third chapter, the integral modeling of servo proportional valve is studied. A centralized parameter model of an electrical mechanical converter is set up, which embodies the nonlinear characteristics of the common electromagnet such as hysteresis and nonlinear inductor. The model of the mechanical moving parts of the valve body is established. The main parameters are determined by direct measurement and indirect estimation. According to the experiment, the model is fitted. The mathematical model of steady state fluid dynamic is designed. Two experimental testing methods of open loop and closed loop are designed to verify the validity of the model. By linearizing the zero position, the nominal model of the valve is obtained, the transfer function and the state space expression are obtained, and the linear parameter and the variation range of the main parameters are obtained.
In the fourth chapter, the nonlinear sliding mode control method of servo proportional valve is studied. According to the frequency response curve of the nominal model of servo proportional valve, the dynamic constraints represented by the equation of each asymptote on the curve are analyzed. The function formula between these constraints and the valve model parameters is derived, which is the basis of the design of the follow-up sliding mode controller. The parameter value and the limit of the valve core travel, the nonlinear sliding mode surface which represents the optimal step response of time is adopted under the addition of addition speed, and the sliding mode control system is designed accordingly. The closed-loop step response and frequency response of the valve core position of the servo proportional valve are tested by simulation and experiment, and the analog PID controller which is matched with the valve original is also tested. A comparison is made to verify the performance of the sliding mode controller.
In the fifth chapter, the improved sliding mode control method for servo proportional valve is studied. Aiming at the nonlinear sliding mode controller of the fourth chapter, the shortcomings of the sliding mode controller are analyzed, and a number of improvement methods are proposed. The integrator is introduced to solve the problem that the steady state precision is not guaranteed in the sliding mode control. Two kinds of speed feedforward compensation methods are proposed to improve the valve core. A high / low voltage power switching technique is used to further improve the dynamic response of the valve. A method for the transformation of the LVDT displacement sensor with the valve body is proposed, and the full state feedback signal of the displacement of the valve core motion, speed and acceleration signal is extracted, and it is successfully used in the sliding mode control. The design is based on acceleration and addition. Under the constraint of acceleration, the nonlinear sliding mode surface of the time optimal step response is represented, and the corresponding sliding mode controller is designed. The implementation criteria and calculation process applied to real-time control are given. The stability of sliding mode state under different loads and the ability to resist load disturbance are achieved.
In the sixth chapter, the nonlinear control method of the large flow cartridge servo valve is studied. Aiming at the frequency response of the pilot servo proportional valve is far lower than the frequency response of the main valve, the simplified three order model of the plug servo valve is established, and the controller is designed. The robust control and backstepping control based on the model compensation is adopted. The dynamic equation of the system is reconstructed by method (backstepping), and the pole of the system is configured. The adaptive estimation of the valve coefficients and leakage parameters based on Lyapunov function and nonlinear mapping is adopted to improve the accuracy of the model compensation. The performance of the above control algorithm is verified by simulation analysis and experimental comparison.
The seventh chapter summarizes the main research work of the paper, expounds the main research conclusions and innovations, and puts forward the prospect for further research.

【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:TH137.52

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王大_g;郭宏;劉治;張立佳;;直驅(qū)閥用音圈電機(jī)的模糊非線性PID控制[J];電工技術(shù)學(xué)報(bào);2011年03期

2 劉宏獻(xiàn);韓玉坤;王立新;;比例插裝閥在鍛造液壓機(jī)中的應(yīng)用分析[J];鍛壓技術(shù);2009年06期

3 陳柏金,黃樹槐,魏運(yùn)華,孫茂;大通徑電液比例閥及其在鍛造液壓機(jī)上的應(yīng)用[J];鍛壓機(jī)械;2000年06期

4 權(quán)龍,李風(fēng)蘭;液壓晶體管Valvistor—可連續(xù)比例控制的新型插裝閥[J];工程機(jī)械;1995年06期

5 李其朋,丁凡;電液伺服閥技術(shù)研究現(xiàn)狀及發(fā)展趨勢[J];工程機(jī)械;2003年06期

6 蔣婷婷;譚建平;司玉校;孫康;;高壓大流量液壓系統(tǒng)卸荷規(guī)律實(shí)驗(yàn)研究[J];鍛壓技術(shù);2012年05期

7 周淼磊;楊志剛;高巍;田彥濤;程光明;沈傳亮;;高速精密壓電型電液伺服閥及其控制方法[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2009年09期

8 張曉宇;蘇宏業(yè);;滑模變結(jié)構(gòu)控制理論進(jìn)展綜述[J];化工自動化及儀表;2006年02期

9 黃火兵;夏偉;屈盛官;王郡文;;比例控制與插裝閥技術(shù)的應(yīng)用與發(fā)展[J];機(jī)床與液壓;2007年04期

10 方群;黃增;;電液伺服閥的發(fā)展歷史、研究現(xiàn)狀及發(fā)展趨勢[J];機(jī)床與液壓;2007年11期

相關(guān)博士學(xué)位論文 前4條

1 傅林堅(jiān);大流量高響應(yīng)電液比例閥的設(shè)計(jì)及關(guān)鍵技術(shù)研究[D];浙江大學(xué);2010年

2 崔劍;回轉(zhuǎn)直動式電液伺服閥關(guān)鍵技術(shù)研究[D];浙江大學(xué);2008年

3 姚靜;鍛造油壓機(jī)液壓控制系統(tǒng)的關(guān)鍵技術(shù)研究[D];燕山大學(xué);2009年

4 許小慶;新型電液伺服比例閥用電—機(jī)械轉(zhuǎn)換器的理論分析和試驗(yàn)研究[D];太原理工大學(xué);2010年

,

本文編號:1811922

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1811922.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6be62***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
日韩av欧美中文字幕| 91在线国内在线中文字幕| av中文字幕一区二区三区在线| 中文字幕一区二区三区中文| 国产精品一区日韩欧美| 国产精品久久精品毛片| 大香蕉精品视频一区二区| 美国女大兵激情豪放视频播放| 色小姐干香蕉在线综合网| 激情爱爱一区二区三区| 沐浴偷拍一区二区视频| 国产精品亚洲精品亚洲| 日韩偷拍精品一区二区三区| 精品国产91亚洲一区二区三区| 欧洲亚洲精品自拍偷拍| 大尺度激情福利视频在线观看| 欧美欧美日韩综合一区| 青青久久亚洲婷婷中文网| 夫妻性生活一级黄色录像| 人妻久久这里只有精品| 欧美一级特黄大片做受大屁股| 国产在线观看不卡一区二区| 色综合久久中文综合网| 午夜精品一区二区av| 国产激情一区二区三区不卡| 亚洲午夜av久久久精品| 在线免费观看黄色美女| 国产综合欧美日韩在线精品| 日本本亚洲三级在线播放| 欧美韩日在线观看一区| 国产视频一区二区三区四区| 久久一区内射污污内射亚洲| 国产午夜精品美女露脸视频| 人妻中文一区二区三区| 91久久精品在这里色伊人| 午夜精品成年人免费视频| 日本成人中文字幕一区| 亚洲欧美天堂精品在线| 欧美六区视频在线观看| 免费在线播放一区二区| 精品精品国产欧美在线|