液控滑閥閥芯運動特性的研究
本文選題:液控多路閥 + 流量放大閥。 參考:《蘭州理工大學》2011年碩士論文
【摘要】:液控主閥芯的運動過程決定了主閥閥口面積的變化過程,從而決定了液壓缸的運動特性。設計建立了液控多路閥和流量放大閥主閥芯瞬態(tài)運動測量試驗臺,有效測量出液動多路閥主閥芯的瞬態(tài)運動過程、閥油口壓力瞬變等過程,得出閥口開啟和關閉的時間、主閥芯運動最大速度和加速度等特征量。并搭建了AMESim閥控缸仿真平臺,將主要特征量和實測進行了對比,吻合良好。本研究對于深入理解液控滑閥的控制特性、閥口面積的設計和系統(tǒng)匹配具有普遍的指導意義。 主要內容如下: 第1章,闡述了本論文研究的背景和意義及多路閥的研究現(xiàn)狀和發(fā)展趨勢。 第2章,對液控多路閥內部流動進行了流場解析,得出了閥口壓力損失特性、閥口壓力及速度分布、主閥芯所受穩(wěn)態(tài)液動力,并發(fā)現(xiàn)了閥口所在位置,為閥口面積解析提供了依據(jù)。同時對液控多路閥的閥口面積進行了數(shù)值解析,得出了液控多路閥主閥的閥口面積曲線。 第3章,設計建立了液控多路閥主閥芯瞬態(tài)運動過程測量試驗臺,得出了液控多路閥主閥芯的瞬態(tài)運動過程、油口壓力的瞬變過程、油缸的運動過程等;建立了閥控缸的AMESim仿真模型,仿真得出主閥芯的運動過程和實測值吻合良好,采用此AMESim仿真模型分析了主閥芯結構參數(shù)對主閥芯瞬態(tài)運動的影響;同時建立了先導閥控主閥芯的AMESim仿真模型,分析了先導閥結構參數(shù)對主閥芯瞬態(tài)運動的影響。 第4章,設計建立了流量放大閥主閥芯瞬態(tài)運動過程測量試驗臺,得出了流量放大閥主閥芯的瞬態(tài)運動過程、油口壓力的瞬變過程、油缸的運動過程等。 第5章,采用第3章所建AMESim仿真模型,對液壓系統(tǒng)動態(tài)特性影響因素進行了仿真研究,得出了閥芯運動速度、異步開啟大小、中位回油閥口面積梯度、回油閥口面積梯度等因素對液壓系統(tǒng)動態(tài)特性的影響。 最后,對本論文的研究工作和成果進行了總結,展望了下一步的研究工作。
[Abstract]:The movement process of the main valve core determines the changing process of the main valve opening area, and thus determines the motion characteristics of the hydraulic cylinder. The transient motion measurement test-bed of the main valve core of the hydraulic multiway valve and the flow amplification valve is designed and established. The transient motion process of the main valve core and the transient pressure transient process of the main valve core are effectively measured, and the opening and closing time of the valve opening and closing are obtained. Main spool movement maximum velocity and acceleration and other characteristics. The simulation platform of AMESim valve control cylinder is built, and the main characteristic quantity is compared with the actual measurement, which is in good agreement. This study is of general significance for understanding the control characteristics of the hydraulic slide valve, the design of valve opening area and the system matching. The main contents are as follows: In chapter 1, the background and significance of this thesis and the research status and development trend of multi-way valve are described. In chapter 2, the flow field of the liquid controlled multiway valve is analyzed, and the pressure loss characteristics, the pressure and velocity distribution, the steady hydraulic power of the main valve core are obtained, and the position of the valve port is found. It provides the basis for the analysis of valve opening area. At the same time, the valve area of the hydraulic multiway valve is analyzed numerically, and the curve of the valve opening area of the main valve is obtained. In the third chapter, the transient motion process of the main valve core of the hydraulic multiway valve is designed and established, and the transient motion process of the main valve core, the transient process of the oil mouth pressure and the motion process of the cylinder are obtained. The AMESim simulation model of valve control cylinder is established, and the simulation results show that the movement process of the main valve core is in good agreement with the measured value. The influence of the structural parameters of the main valve core on the transient motion of the main valve core is analyzed by using the AMESim simulation model. At the same time, the AMESim simulation model of pilot valve control core is established, and the influence of pilot valve structure parameters on the transient movement of main valve core is analyzed. In chapter 4, the transient motion process of the main valve core of the flow amplifier valve is designed and set up, and the transient motion process of the main valve core, the transient process of the pressure of the oil port and the motion process of the cylinder are obtained. In chapter 5, by using the AMESim simulation model established in Chapter 3, the factors affecting the dynamic characteristics of hydraulic system are simulated and studied. The movement speed of valve core, the asynchronous opening size, the area gradient of the median oil return valve are obtained. The effect of the area gradient of return valve on the dynamic characteristics of hydraulic system. Finally, the research work and results of this paper are summarized, and the next research work is prospected.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:TH137.52
【參考文獻】
相關期刊論文 前10條
1 黃宗益;輪式裝載機的發(fā)展趨勢[J];工程機械;1996年03期
2 馮開林,陳康寧,鄒廣德,高松;先進液壓控制技術在工程機械的應用研究[J];工程機械;2002年05期
3 韓學松;;2010年工程機械行業(yè)經(jīng)濟運行情況及2011年預測[J];工程機械與維修;2011年03期
4 冀宏;王東升;丁大力;譚正生;劉小平;;非全周開口滑閥閥口面積的計算方法[J];蘭州理工大學學報;2008年03期
5 林曉磊 ,徐瑞銀 ,郭大洲;液壓系統(tǒng)的沖擊、振動分析與控制[J];起重運輸機械;2005年04期
6 胡國清,張光函,吳持恭;LDA和K-ε紊流模型研究液壓集成塊流場[J];成都科技大學學報;1996年01期
7 曹秉剛,史維祥,,中野和夫;內流式錐閥液動力及閥芯錐面壓強分布的實驗研究[J];西安交通大學學報;1995年07期
8 楊強;;液壓元件的發(fā)展與裝備制造業(yè)的振興[J];現(xiàn)代機械;2010年03期
9 周文;主動振動控制技術的發(fā)展和應用[J];液壓氣動與密封;2003年04期
10 李建宇;;液壓系統(tǒng)振動噪聲產生原因分析[J];液壓與氣動;2006年05期
相關碩士學位論文 前2條
1 王東升;節(jié)流槽滑閥閥口流量系數(shù)及穩(wěn)態(tài)液動力計算的研究[D];蘭州理工大學;2008年
2 譚正生;裝載機流量放大型轉向液壓系統(tǒng)的減振研究[D];蘭州理工大學;2009年
本文編號:1806924
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1806924.html