裝載機(jī)自動鏟裝作業(yè)軌跡控制器研發(fā)
本文選題:裝載機(jī) + 自動鏟裝 ; 參考:《浙江大學(xué)》2011年碩士論文
【摘要】:裝載機(jī)作為工程機(jī)械主流機(jī)種之一,應(yīng)用面極廣。而目前國內(nèi)裝載機(jī)的鏟掘作業(yè)是由操作者操縱動臂手柄或鏟斗手柄來完成的,而在手動控制的過程中,動臂的卸載位置和鏟掘位置有很大的隨機(jī)性,需要操作者對鏟斗的位置姿態(tài)進(jìn)行調(diào)整。由于裝載機(jī)的作業(yè)形式是它圍繞著作業(yè)對象在移動,而作業(yè)對象復(fù)雜多變,因此,就使得裝載機(jī)的鏟掘作業(yè)的效率很大程度上取決于操作者的經(jīng)驗(yàn)、技能和意愿。也正是由于它的工作特點(diǎn),操作人員需要反復(fù)地鏟掘、運(yùn)料,卸料及頻繁地車輛換向,這使操作人員在工作中易疲勞,工作效率降低。為了減輕操作者的勞動強(qiáng)度,提高裝載機(jī)的作業(yè)效率,以及消除因操作者鏟掘作業(yè)的技術(shù)水平而造成的能源浪費(fèi),本文圍繞裝載機(jī)自動鏟裝作業(yè)軌跡控制問題,進(jìn)行了以下研究工作: 1.根據(jù)裝載機(jī)的工作裝置機(jī)構(gòu)特點(diǎn),對工作裝置進(jìn)行了運(yùn)動學(xué)分析,建立了裝載機(jī)工作裝置的簡化模型并采用(D-H)法建立桿件坐標(biāo)系,用矩陣變換法求出了鏟斗相對于車架的位置變換矩陣,實(shí)現(xiàn)了鏟掘軌跡由直角坐標(biāo)空間向關(guān)節(jié)空間轉(zhuǎn)換,通過求解裝載機(jī)工作裝置的幾何關(guān)系,求得由關(guān)節(jié)空間向驅(qū)動空間轉(zhuǎn)換;結(jié)合手動鏟裝作業(yè)過程的試驗(yàn)軌跡分析,結(jié)合提高作業(yè)效率和節(jié)能降耗兩方面的要求進(jìn)行自動鏟裝作業(yè)軌跡的理論分析和規(guī)劃;運(yùn)用Matlab工具進(jìn)行曲線擬合,得到動臂油缸和轉(zhuǎn)斗油缸的驅(qū)動方程。 2.搭建以電比例減壓閥控制分配閥對裝載機(jī)工作裝置油缸進(jìn)行位置控制的液壓系統(tǒng);根據(jù)動臂和鏟斗油缸控制鏟斗軌跡的特點(diǎn),明確動臂和鏟斗油缸運(yùn)動控制算法;為實(shí)現(xiàn)作業(yè)效率和鏟裝的滿斗率,制定了自動鏟裝過程中的智能減阻控制策略。 3.由于裝載機(jī)工作條件惡劣的原因,采用高可靠性的英飛凌XC167為微處理器搭建了控制器的硬件平臺滿足工業(yè)方面的應(yīng)用;設(shè)計了微處理器控制系統(tǒng)的電源模塊電路、復(fù)位電路和看門狗監(jiān)視復(fù)位電路、CPU外部時鐘電路、外部EEPROM電路、輸入輸出10電路、CAN通信模塊電路、PWM驅(qū)動模塊電路、模擬信號采集處理模塊電路、車速頻率信號采集處理電路等主要電路,以及控制器的硬件抗干擾設(shè)計;動臂和鏟斗油缸壓力傳感器、角度傳感器的選型。并且采用Multisim電路仿真軟件對模擬信號采集處理模電路和車速頻率信號采集處理電路進(jìn)行了仿真,驗(yàn)證了電路設(shè)計能滿足設(shè)計性能要求。 4.根據(jù)自動鏟裝作業(yè)軌跡控制的控制策略和硬件設(shè)計方案,編寫了自動鏟裝軌跡控制的主程序、系統(tǒng)初始化程序、插入物料和鏟取物料操作控制子程序、模糊PID控制程序、讀AD轉(zhuǎn)換數(shù)據(jù)程序和EEPROM讀寫數(shù)據(jù)程序等主要程序的流程圖;編寫主要的初始化源程序、讀取A/D轉(zhuǎn)換數(shù)據(jù)的源程序;制定給電比例減壓閥控制信號疊加顫振信號的方法;闡述單片機(jī)系統(tǒng)軟件設(shè)計時所采取的軟件抗干擾措施。
[Abstract]:Loaders as one of the mainstream construction machinery machinery, the application is very wide. At present, the shovel operation of the domestic loader is accomplished by the operator manipulating the arm handle or the bucket handle. However, in the process of manual control, the unloading position and the excavating position of the moving arm have great randomness. The operator is required to adjust the position and posture of the bucket. Because the form of the loader is moving around the operating object and the operation object is complex and changeable, the efficiency of the loader shovel operation depends to a great extent on the operator's experience, skill and willingness. It is precisely because of its working characteristics that the operator needs to repeatedly shovel, load, unload and commute the vehicle frequently, which makes the operator easily fatigue and reduce the working efficiency. In order to reduce the labor intensity of the operator, improve the working efficiency of the loader and eliminate the energy waste caused by the technical level of the operator's shovel, this paper focuses on the control of the track of the loader's automatic shovel. The following studies were carried out: 1. According to the working mechanism characteristics of the loader, the kinematics analysis of the working device is carried out, the simplified model of the working device of the loader is established, and the bar coordinate system is established by the method of D-H). The position transformation matrix of the bucket relative to the frame is obtained by using the matrix transformation method. The shovel track is transformed from the rectangular coordinate space to the joint space, and the geometric relationship of the loader working device is solved. The theoretical analysis and planning of automatic shovel operation trajectory are carried out according to the requirements of improving operation efficiency and saving energy and reducing consumption by analyzing the test track of manual shovel loading process and combining with the requirements of improving operation efficiency and saving energy and reducing consumption. The driving equations of the moving arm cylinder and the rotary bucket cylinder are obtained by using the curve fitting of Matlab tool. 2. A hydraulic system is set up to control the position of the oil cylinder of the loader working device with the electric proportional pressure reducing valve control distribution valve, according to the characteristics of the moving arm and the bucket oil cylinder to control the bucket trajectory, the motion control algorithm of the moving arm and bucket oil cylinder is defined. In order to realize the working efficiency and the full bucket rate of the shovel, the intelligent drag reduction control strategy in the process of automatic shoveling was formulated. 3. Because of the bad working conditions of the loader, the hardware platform of the controller is built by Infineon XC167 with high reliability to meet the industrial application, and the power module circuit of the microprocessor control system is designed. The reset circuit and watchdog monitor reset circuit include the external clock circuit, the external EEPROM circuit, the input and output 10 circuits, the can communication module circuit and the PWM driving module circuit, the analog signal acquisition and processing module circuit. The main circuits such as speed frequency signal acquisition and processing circuit and the hardware anti-interference design of the controller, the pressure sensor of the moving arm and bucket cylinder, the selection of the angle sensor. The analog signal acquisition and processing mode circuit and the speed frequency signal acquisition and processing circuit are simulated by using the Multisim circuit simulation software. It is verified that the circuit design can meet the design performance requirements. 4. According to the control strategy and hardware design scheme of automatic shovel operation trajectory control, the main program, system initialization program, insert material and shovel material operation control subroutine, fuzzy PID control program are compiled. Read the flow chart of the main programs such as AD conversion data program and EEPROM read and write data program, write the main initialization source program, read the A / D conversion data source program, formulate the method of superposition flutter signal of the control signal of proportional pressure relief valve. This paper expounds the software anti-interference measures adopted in the software design of single chip computer system.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2011
【分類號】:TH243
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姚踐謙,李政菊,彭才忠;裝載機(jī)鏟斗插入鏟取機(jī)理與阻力[J];工程機(jī)械;1993年03期
2 宋占偉,聞邦椿;裝載機(jī)電子控制技術(shù)的發(fā)展及應(yīng)用[J];工程機(jī)械;2000年10期
3 朱長亮;我國輪式裝載機(jī)產(chǎn)品的發(fā)展[J];工程機(jī)械與維修;1999年08期
4 袁軍;基于力控制的機(jī)器人裝配作業(yè)實(shí)驗(yàn)研究[J];航天控制;1995年04期
5 吳永平;;現(xiàn)代裝載機(jī)技術(shù)發(fā)展綜述[J];建設(shè)機(jī)械技術(shù)與管理;2009年01期
6 杜克林,胡建元,黃心漢;機(jī)械手柔順和剛度廣義中心分析[J];機(jī)器人;1997年04期
7 殷躍紅,尉忠信,朱劍英;機(jī)器人柔順控制研究[J];機(jī)器人;1998年03期
8 尹朝忠;胡天友;;地下鏟運(yùn)機(jī)自動鏟取最優(yōu)軌跡的研究[J];金屬礦山;2009年03期
9 張榮沂;蘇凌峰;劉穎;李勝杰;;基于MATLAB的裝載機(jī)工作裝置運(yùn)動過程動態(tài)仿真[J];黑龍江工程學(xué)院學(xué)報;2006年04期
10 龔捷;崔玉鑫;;裝載機(jī)鏟掘作業(yè)的軌跡規(guī)劃[J];機(jī)械工程學(xué)報;2009年07期
相關(guān)碩士學(xué)位論文 前7條
1 馮治國;裝載機(jī)用新型數(shù)字電液比例先導(dǎo)閥的研究[D];吉林大學(xué);2004年
2 張舒原;裝載機(jī)智能減阻鏟裝機(jī)理及實(shí)現(xiàn)[D];中南大學(xué);2003年
3 韓宏蕾;中國裝載機(jī)行業(yè)發(fā)展戰(zhàn)略研究[D];山東大學(xué);2006年
4 寧俏俏;裝載機(jī)鏟掘作業(yè)軌跡的自適應(yīng)控制仿真研究[D];吉林大學(xué);2008年
5 王之新;裝載機(jī)工作裝置軌跡的自適應(yīng)控制仿真研究[D];吉林大學(xué);2009年
6 尹朝忠;地下鏟運(yùn)機(jī)工作裝置的智能化控制[D];電子科技大學(xué);2009年
7 劉濤;智能裝載機(jī)作業(yè)控制系統(tǒng)的設(shè)計及仿真[D];西南交通大學(xué);2009年
,本文編號:1803808
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1803808.html