基于新型旋轉高速開關閥的內(nèi)部流場分析及研究
本文選題:液壓控制系統(tǒng) + 高速開關閥; 參考:《廣東工業(yè)大學》2012年碩士論文
【摘要】:在液壓控制系統(tǒng)中,高速開關閥是20世紀80年代發(fā)展起來的一種新型數(shù)字電液轉換控制元件,工作于開關兩種狀態(tài),具有控制精度高、響應速度快、能量損失小以及提供數(shù)字接口便于計算機連接控制等特點,應用范圍非常廣泛。但是,由于高速開關閥自身的特點,存在大流量與快速響應兩個性能之間存在矛盾,而無法滿足大功率液壓系統(tǒng)的需求。 本文研究一種新型旋轉高速開關閥,無需外加驅(qū)動,無需加速減速換向等操作,利用流體自身動能沖擊閥芯夾心節(jié)螺旋葉片使閥芯獲得動力旋轉,隨著閥芯旋轉,螺旋葉片交織結構使得流體選擇性的流向應用或流回油箱,通過改變閥芯的軸向位置調(diào)節(jié)PWM輸出,PWM從0到100%可調(diào),流量可達40L/M,開關速度3.4毫秒。軸向控制系統(tǒng)是由單片機、擺線泵和H橋電路組成,把閥一端的液壓油抽到另一端來實現(xiàn)閥芯的軸向位移,從而實現(xiàn)流量輸出PWM控制。通過分析新型旋轉高速開關閥的原理,閥體參數(shù)之間的幾何關系,分閥芯和閥套兩個主要零件設計新型旋轉高速開關閥,利用Proe軟件參數(shù)化建模。閥套上有流體入口,三個噴嘴和四個孔特征。閥芯分夾心節(jié)和兩個輸出導向節(jié)(一個流向應用,一個流回油箱),夾心節(jié)上主要設計是六個螺旋葉片。通過對閥芯自旋轉動力進行分析,在夾心節(jié)上設計閥芯螺旋葉片的軌道。為了提高開關響應速度,本文提出優(yōu)化旋轉高速開關閥提高閥芯旋轉速度的兩種方法,利用導向節(jié)開槽和減小噴嘴面積,結合ANSYS/WORKBENCH提供的Fluid Flow(Fluent)模型對閥內(nèi)部流場進行仿真。仿真結果表明,可以利用在輸出導向節(jié)的設計來增加閥芯的自旋轉動力,利用流體自身動能提高閥芯自旋轉速度,從而提高了閥的開關頻率。優(yōu)化后,在噴嘴上的壓力損失為0.36Mpa,輸出導向節(jié)的壓力損失為0.2Mpa,增加了導向節(jié)的壓力損失的同時,閥芯旋轉速度由51HZ提升到81HZ,開關響應速度由5.4毫秒提升為3.4毫秒。根據(jù)仿真結果設計出新型旋轉高速開關閥的虛擬變量泵系統(tǒng),研究該系統(tǒng)的能量損失,結果表明,基于新型旋轉高速開關閥的虛擬變量泵系統(tǒng)比比例閥節(jié)流控制系統(tǒng)更優(yōu)越。
[Abstract]:In hydraulic control system, high speed switch valve is a new type of digital electro-hydraulic control element developed in 1980s. It works in two states of switch, and has high control precision and fast response speed. Energy loss is small and the digital interface is convenient for computer connection control, so it is widely used. However, because of the characteristics of the high speed switch valve, there is a contradiction between the high flow rate and the fast response, which can not meet the requirements of the high power hydraulic system. In this paper, a new type of rotary high speed switch valve is studied, which does not need to be driven by external force, does not need to speed up deceleration and commutates, and uses the kinetic energy of the fluid itself to impinge on the spiral blade of the core knob to make the valve core obtain dynamic rotation and rotate with the valve core. The spiral blade interleaving structure makes the fluid flow selectively applied or flowing back to the tank. The PWM output can be adjusted from 0 to 100% by changing the axial position of the valve core. The flow rate can reach 40 L / M and the switching speed is 3.4 milliseconds. The axial control system is composed of single chip microcomputer, cycloid pump and H-bridge circuit. The hydraulic oil at one end of the valve is drawn to the other end to realize the axial displacement of the valve core, thus the flow output PWM control is realized. Based on the analysis of the principle of the new rotary high speed switch valve and the geometric relationship between the valve body parameters, the new rotary high speed switch valve is designed by dividing the valve core and the valve sleeve into two main parts, and the parametric modeling is made by using Proe software. The valve sleeve has fluid inlet, three nozzles and four holes. The valve core is divided into sandwich joints and two output steering knots (one flow direction application, one flow back to the tank). The main design of the sandwich joint is six helical blades. By analyzing the self-rotating power of the spool, the track of the spool spiral blade is designed on the sandwich joint. In order to improve the switching response speed, this paper presents two methods to optimize the rotary high speed switch valve to increase the rotating speed of the valve core. The flow field inside the valve is simulated by using the slotted guide joint and reducing the area of the nozzle, combined with the Fluid flow flow model provided by ANSYS/WORKBENCH. The simulation results show that the self-rotating power of the valve core can be increased by the design of the output steering joint, and the self-rotating speed of the valve core can be increased by using the kinetic energy of the fluid itself, thus increasing the switching frequency of the valve. After optimization, the pressure loss on the nozzle is 0.36 Mpaand the pressure loss on the output steering joint is 0.2 Mpa. the pressure loss of the guide joint is increased, and the rotating speed of the valve core is increased from 51HZ to 81HZ, and the switching response speed is increased from 5.4 milliseconds to 3.4 milliseconds. According to the simulation results, the virtual variable pump system of the new rotary high speed switch valve is designed, and the energy loss of the system is studied. The results show that the virtual variable variable pump system based on the new rotary high speed switch valve is superior to the proportional valve throttle control system.
【學位授予單位】:廣東工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH137.52
【參考文獻】
相關期刊論文 前10條
1 ;Numerical Simulation of Line Puff Via RNGK-ep Mode[J];Communications in Nonlinear Science & Numerical Simulation;1996年04期
2 姚征,陳康民;CFD通用軟件綜述[J];上海理工大學學報;2002年02期
3 賈振元,楊興,武丹,郭東明;超磁致伸縮執(zhí)行器及其在流體控制元件中的應用[J];機床與液壓;2000年02期
4 施光林,鐘廷修;高速電磁開關閥的研究與應用[J];機床與液壓;2001年02期
5 楊繼隆,阮健,俞浙青;電磁高速開關閥的設計方案研究[J];機床與液壓;2001年03期
6 張小軍,凌寧,朱國偉,崔可潤;新型高速開關閥的設計與研究[J];機床與液壓;2001年06期
7 胡竟湘;李建軍;鐘定清;;高速開關閥及其發(fā)展趨勢[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2009年02期
8 徐學忠;;擺線泵流量特性分析及計算機仿真[J];機械傳動;2006年06期
9 石延平,劉成文,張永忠;一種大流量高速開關閥的研究與設計[J];機械工程學報;2004年04期
10 周福章,李力千,劉志瑋,任德志;高速開關閥的設計與研究[J];機械工程學報;1998年05期
相關碩士學位論文 前1條
1 于海波;復合式水力旋流器耦合流場的研究[D];大慶石油學院;2006年
,本文編號:1797921
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1797921.html