基于動壓反饋的氣動負載模擬器控制策略研究
本文選題:氣動力伺服系統(tǒng)頻率特性 + 間隙機構。 參考:《哈爾濱工業(yè)大學》2012年碩士論文
【摘要】:氣動負載模擬器作為近幾年新起的負載模擬器,是一種典型的被動式力伺服系統(tǒng)。氣動系統(tǒng)作為加載部分其主要目的為模擬飛行器中舵面機構在擺動時所受的空氣力矩。舵機的主動運動往往會對氣動系統(tǒng)產(chǎn)生位置干擾,進而引起多余力,選擇氣動系統(tǒng)作為加載裝置可以大幅降低多余力的影響,但是由于氣動系統(tǒng)的非線性,使的氣動力控制伺服系統(tǒng)較其他形式加載裝置頻率特性差,所以減少力控制信號的相位滯后提高系統(tǒng)動態(tài)特性成為本文主要的工作。 首先建立氣動系統(tǒng)數(shù)學模型,采用機理建模的方式得到氣動系統(tǒng)的傳遞函數(shù),分析得出系統(tǒng)達不到預期控制目標的主要原因是加載系統(tǒng)在舵機系統(tǒng)的強干擾下實行加載所導致。由于氣體的可壓縮性,使干擾作用在實際中體現(xiàn)在舵機運動導致的兩腔壓力變化?紤]到速度補償不容易實現(xiàn)的特點,提出采用動壓反饋,補償位置造成的干擾,根據(jù)補償?shù)牧εc位置變化產(chǎn)生的力相等推導出動壓反饋的傳遞函數(shù)。在仿真和實驗中主要調節(jié)動壓反饋系數(shù)的大小。 建立伺服電機的數(shù)學模型,合理設置參數(shù)。通過matlab對電機動態(tài)特性進行仿真。通過Amesim建立了氣動負載模擬器的實際模型,分別采用PID和PID+動壓反饋的控制方法,得出動壓反饋優(yōu)于PID調節(jié)。另外分析了影響系統(tǒng)動態(tài)特性的其他因素包括比例閥和氣源壓力的選擇。 采用Adams對負載模擬器機械結構進行動力學分析,分析機械結構間隙對加載力曲線的影響,得到不同間隙下的搖桿位移、速度和加速度曲線,得到合理間隙值,為實驗環(huán)節(jié)做下準備。同時針對伺服電機在低頻時動態(tài)特性不足,設計出慣量輪,借此在實驗中提升電機動態(tài)特性。另外合理選擇整個實驗臺的底座,采用較大的底座慣量,提高整個實驗臺的剛性。 搭建氣動負載模擬器特性實驗臺,實驗以Matlab中xpc-target工具建立軟件系統(tǒng),采用上下位機的形式控制板卡進行數(shù)據(jù)采集與實時控制。采用PID和PID+動壓反饋兩種控制方法。同時驗證了機械結構優(yōu)化設計對力曲線的影響,,測試結果表明實驗曲線與仿真曲線基本一致。
[Abstract]:As a new load simulator in recent years, pneumatic load simulator is a typical passive force servo system. As the loading part, the aerodynamic system is designed to simulate the air torque of the rudder mechanism in the aircraft when it is swinging. The active motion of the steering gear often produces the position interference to the pneumatic system, and then causes the redundant force. Choosing the pneumatic system as the loading device can greatly reduce the influence of the redundant force, but because of the nonlinearity of the pneumatic system, The frequency characteristic of the pneumatic control servo system is worse than that of other loading devices, so reducing the phase lag of the force control signal and improving the dynamic characteristics of the system become the main work in this paper. Firstly, the mathematical model of pneumatic system is established, and the transfer function of pneumatic system is obtained by mechanism modeling. It is concluded that the main reason that the system can not achieve the expected control goal is the loading of the loading system under the strong disturbance of the steering gear system. Because of the compressibility of the gas, the interference is reflected in the pressure change of the two cavities caused by the motion of the steering gear. Considering the fact that velocity compensation is not easy to be realized, it is proposed that dynamic pressure feedback is used to compensate the interference caused by position, and the transfer function of dynamic pressure feedback is deduced according to the force produced by the compensated force and the change of position. The dynamic pressure feedback coefficient is mainly regulated in simulation and experiment. The mathematical model of servo motor is established and the parameters are set up reasonably. The dynamic characteristics of the motor are simulated by matlab. The actual model of pneumatic load simulator is established by Amesim. The control methods of PID and PID dynamic pressure feedback are adopted respectively. The result shows that the response pressure feedback is better than the PID regulation. In addition, other factors affecting the dynamic characteristics of the system are analyzed, including the selection of proportional valve and air source pressure. The dynamic analysis of the mechanical structure of the load simulator is carried out by using Adams, and the influence of the gap of the mechanical structure on the loading force curve is analyzed. The displacement, velocity and acceleration curves of the rocker rod under different gaps are obtained, and the reasonable gap values are obtained. Prepare for the experiment. At the same time, the inertia wheel is designed to improve the dynamic characteristics of the servo motor in the experiment. In addition, the base of the whole test platform is reasonably selected, and the rigidity of the whole test platform is improved by adopting the larger inertia of the base. The characteristic test bench of pneumatic load simulator was built. The software system was established by xpc-target tool in Matlab, and the data acquisition and real time control were carried out by the form of upper and lower computer control board. PID and PID dynamic pressure feedback control methods are adopted. At the same time, the effect of mechanical structure optimization design on the force curve is verified. The test results show that the experimental curve is basically consistent with the simulation curve.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH138;V216.8
【參考文獻】
相關期刊論文 前10條
1 姚建勇;焦宗夏;;改進型LuGre模型的負載模擬器摩擦補償[J];北京航空航天大學學報;2010年07期
2 鄭春華;;電子設備中接地抗干擾技術[J];電子制作;2003年10期
3 楊慶俊,包鋼,聶伯勛,王祖溫;比例方向閥控氣動缸動力機構建模[J];哈爾濱工業(yè)大學學報;2001年04期
4 王燕波,包鋼,李軍,王祖溫;氣壓垂直伺服定位系統(tǒng)的實驗研究[J];機床與液壓;2004年05期
5 周毅;劉春輝;孔超;;基于模糊PID控制的氣動負載模擬器研究[J];機床與液壓;2011年11期
6 續(xù)彥芳,崔俊杰,蘇鐵雄;虛擬樣機技術及其在ADAMS中的應用[J];機械管理開發(fā);2005年01期
7 楊俊燕;任家駿;張明;李秀紅;吳鳳林;;基于MSC.ADAMS軟件仿真的關鍵問題[J];機械管理開發(fā);2008年03期
8 郭杏林;趙子坤;;含間隙柔性曲柄搖桿機構動力學分析[J];機械強度;2010年06期
9 柏艷紅;李小寧;;氣動位置伺服系統(tǒng)狀態(tài)反饋控制的改進[J];機械工程學報;2009年08期
10 陳先鋒,舒志兵,趙英凱;基于PMSM伺服系統(tǒng)的數(shù)學模型及其性能分析[J];機械與電子;2005年01期
相關博士學位論文 前2條
1 王曉雷;氣動隔振器及八作動器隔振平臺控制問題研究[D];哈爾濱工業(yè)大學;2008年
2 張彪;電液負載模擬器多余力矩抑制及其反步自適應控制研究[D];哈爾濱工業(yè)大學;2009年
本文編號:1786273
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1786273.html