離心式心臟泵內(nèi)部流場(chǎng)的定常與非定常數(shù)值模擬
本文選題:離心式心臟泵 + 流場(chǎng) ; 參考:《蘭州理工大學(xué)》2012年碩士論文
【摘要】:隨著科學(xué)技術(shù)的進(jìn)步和經(jīng)濟(jì)的發(fā)展,應(yīng)用人工心臟泵代替自然心臟的心臟病患者越來(lái)越多。離心式心臟泵作為一種新型的人工心臟泵,具有體積小、可靠性高,對(duì)血液破壞性小等優(yōu)點(diǎn),它的研究對(duì)心臟泵的發(fā)展有很重要的作用。 本課題利用CFD軟件對(duì)采用一元理論設(shè)計(jì)方法所設(shè)計(jì)的離心式心臟泵進(jìn)行定常和非定常數(shù)值計(jì)算,模擬和分析了離心式心臟泵內(nèi)部流場(chǎng)的分布,研究了泵內(nèi)部流動(dòng)的特殊規(guī)律和流動(dòng)機(jī)理。分別用定常和非定常的方法模擬分析了離心式心臟泵在不同轉(zhuǎn)速和流量下的內(nèi)流場(chǎng)的壓力場(chǎng)、速度場(chǎng)、速度矢量和切應(yīng)力等的分布,,為離心式人工心臟泵提高性能以及抗血栓和溶血提供了依據(jù)。 本文綜合分析了國(guó)內(nèi)外人工心臟泵的研究現(xiàn)狀,并闡述了CFD的基本理論,介紹了CFD軟件模擬過程中所用到的模型及數(shù)值計(jì)算方法。利用PRO/E軟件建立三維流道實(shí)體模型,將三維流道實(shí)體模型導(dǎo)入網(wǎng)格劃分軟件ICEM,利用四面體非結(jié)構(gòu)化網(wǎng)格分別對(duì)吸入室、葉輪、蝸殼以及回流區(qū)進(jìn)行網(wǎng)格劃分,并分析了網(wǎng)格數(shù)量及質(zhì)量對(duì)數(shù)值解的影響。利用CFD軟件FLUENT對(duì)得到的四部分網(wǎng)格文件進(jìn)行合并,設(shè)置流場(chǎng)計(jì)算的參數(shù)和邊界條件,采用RNGkε湍流模型和壓力耦合的SIMPLEC算法求解方程,實(shí)現(xiàn)了人工心臟泵流場(chǎng)的定常和非定常數(shù)值模擬。 對(duì)不同工況下的心臟泵進(jìn)行定常數(shù)值模擬,得到了離心式心臟泵的外特性曲線以及內(nèi)流場(chǎng)的壓力、速度以及切應(yīng)力等的分布;對(duì)設(shè)計(jì)工況下的心臟泵進(jìn)行非定常數(shù)值模擬,研究了心臟泵的軸向力、徑向力以及速度和壓力分布,揭示了離心式心臟泵葉輪和蝸殼的動(dòng)靜干擾對(duì)流體產(chǎn)生的非定常影響。從模擬結(jié)果可以看出心臟泵內(nèi)的速度場(chǎng)與壓力場(chǎng)的分布與理論研究相一致。研究結(jié)果可以對(duì)后續(xù)的研究以及離心式心臟泵的選型提供參考。
[Abstract]:With the progress of science and technology and the development of economy, more and more heart disease patients are used in replacing natural heart with artificial heart pump. As a new type of artificial heart pump, centrifugal pump has the advantages of small volume, high reliability and small destruction to blood. The research of centrifugal pump plays an important role in the development of heart pump.
Using the CFD software, the centrifugal heart pump designed by the one element theory design method is used for the constant and unsteady numerical calculation. The distribution of the internal flow field of the centrifugal pump is simulated and analyzed. The special law and flow mechanism of the internal flow of the pump are studied. The centrifugal type is simulated and analyzed by the constant and unsteady methods. The distribution of the pressure field, velocity field, velocity vector and shear stress of the inner flow field of the heart pump at different speed and flow rate provides the basis for the improvement of the performance of the centrifugal pump and the anti thrombus and hemolysis.
This paper comprehensively analyzes the current research status of artificial heart pump at home and abroad, expounds the basic theory of CFD, introduces the model and numerical calculation method used in the process of CFD software simulation, and uses PRO/E software to establish a three-dimensional flow entity model, and introduces the three-dimensional flow entity model into the grid division software ICEM, and uses the tetrahedral unstructured network. Grids are meshed in the suction chamber, impeller, volute and reflux area respectively, and the influence of the number and quality of the grid on the numerical solution is analyzed. The parameters and boundary conditions of the flow field calculation are set up by using the CFD software FLUENT, and the RNGk e turbulence model and the pressure coupled SIMPLEC algorithm are used to solve the problem. The steady and unsteady numerical simulation of the flow field of the artificial heart pump is realized.
The external characteristic curve of the centrifugal pump and the distribution of the pressure, velocity and shear stress of the inner flow field are obtained by the constant numerical simulation of the heart pump under different working conditions. The unsteady numerical simulation of the heart pump under the design condition is carried out. The axial force, radial force, velocity and pressure distribution of the heart pump are studied, and the separation of the heart pump is revealed. The unsteady effects of the static disturbance on the flow of the heart pump impeller and the volute on the fluid production. From the simulation results, the distribution of the velocity field and pressure field in the heart pump is consistent with the theoretical study. The results of the study can provide a reference for the follow-up study and the selection of centrifugal pump.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH311
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐振法;王銀鳳;唐鈴鳳;;顆粒對(duì)雜質(zhì)泵揚(yáng)程及效率的影響規(guī)律研究[J];礦山機(jī)械;2009年13期
2 鄧昌春;;如何考慮QWB離心式潛水污水泵型譜地方標(biāo)準(zhǔn)的制定[J];排灌機(jī)械;1990年03期
3 洪達(dá);離心式電磁制動(dòng)器[J];機(jī)械工人.冷加工;1993年10期
4 王亞力;盧天壽;;離心式噴嘴的內(nèi)部流場(chǎng)[J];火箭推進(jìn);1995年04期
5 ;CPE-1型離心式電動(dòng)凈油機(jī)[J];機(jī)電設(shè)備;2001年02期
6 韓丹;;離心式冷水機(jī)組在地鐵環(huán)控系統(tǒng)中的應(yīng)用與常見故障處理案例[J];科技信息;2011年16期
7 徐工;怎樣正確使用離心式機(jī)油細(xì)濾器[J];山西農(nóng)機(jī);1998年04期
8 宋淑玲,蘇仲田;離心式機(jī)油濾清器轉(zhuǎn)子軸折斷的原因[J];山西農(nóng)機(jī);1998年05期
9 唐宏章,陳汝?yáng)|;離心式制冷機(jī)部分負(fù)荷特性分析[J];制冷技術(shù);1998年04期
10 楊菁;馮國(guó)勇;;離心式可調(diào)煤粉分配器的研制和應(yīng)用[J];上海電力;2005年06期
相關(guān)會(huì)議論文 前10條
1 魏巍;張錫文;;基于大渦模擬的氣旋式懸浮裝置的內(nèi)部流場(chǎng)數(shù)值模擬研究[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
2 孫明明;沈恒根;劉宇天;;內(nèi)切入口長(zhǎng)圓管內(nèi)旋轉(zhuǎn)流的模擬分析研究[A];全國(guó)暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)論文集[C];2010年
3 王德云;鐘康民;;浮動(dòng)支點(diǎn)杠桿在夾具結(jié)構(gòu)設(shè)計(jì)中的應(yīng)用[A];面向制造業(yè)的自動(dòng)化與信息化技術(shù)創(chuàng)新設(shè)計(jì)的基礎(chǔ)技術(shù)——2001年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)暨第九屆全國(guó)特種加工學(xué)術(shù)年會(huì)論文集[C];2001年
4 王曉棟;樂嘉陵;宋文艷;;沖壓燃燒室內(nèi)部流場(chǎng)的數(shù)值模擬研究[A];計(jì)算流體力學(xué)研究進(jìn)展——第十一屆全國(guó)計(jì)算流體力學(xué)會(huì)議論文集[C];2002年
5 欛文P
本文編號(hào):1785332
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1785332.html