基于自適應(yīng)Mean Shift的結(jié)構(gòu)健康狀態(tài)監(jiān)測技術(shù)研究
本文選題:自適應(yīng)Mean + Shift ; 參考:《長安大學(xué)》2013年碩士論文
【摘要】:隨著科學(xué)技術(shù)的發(fā)展,機(jī)械設(shè)備越來越復(fù)雜,自動化水平越來越高,機(jī)械設(shè)備在現(xiàn)代工業(yè)生產(chǎn)中的作用和影響越來越大,,與其有關(guān)的費(fèi)用越來越高,機(jī)器運(yùn)行中發(fā)生的任何故障或失效不僅會造成重大的經(jīng)濟(jì)損失,甚至還可能導(dǎo)致人員傷亡。因此,應(yīng)該及時(shí)地對設(shè)備故障狀態(tài)進(jìn)行監(jiān)測,使之安全經(jīng)濟(jì)地運(yùn)轉(zhuǎn)。本文以滾動軸承為研究對象,研究了基于自適應(yīng)Mean Shift聚類算法的機(jī)械結(jié)構(gòu)健康狀態(tài)監(jiān)測技術(shù)。 研究了信號的預(yù)處理方法:時(shí)域指標(biāo)、頻域指標(biāo)和小波包變換。實(shí)驗(yàn)表明:當(dāng)滾動軸承出現(xiàn)故障時(shí),時(shí)域、頻域指標(biāo)都會發(fā)生變化,且不同類型損傷和損傷程度不同時(shí),時(shí)域和頻率指標(biāo)有明顯差別;另外,不同類型損傷的振動信號經(jīng)小波包變換分解后,其能量分布也表現(xiàn)出不同的特征;因此,提取振動信號的時(shí)域、頻域和小波包指標(biāo)可以降低振動信號的維數(shù),有效地描述不同類型的故障狀態(tài)。 研究了基于能量熵的健康狀態(tài)監(jiān)測方法,實(shí)驗(yàn)表明:小波包能量熵可以有效地鑒別故障狀態(tài)和損傷程度,可以用來監(jiān)測滾動軸承健康狀態(tài)的變化歷程。 論述了Mean Shift算法的原理,通過實(shí)驗(yàn)研究了核函數(shù)、核半徑以及閾值對聚類算法的影響。核函數(shù)影響聚類分析的準(zhǔn)確率及算法的迭代次數(shù),對于每一個(gè)核函數(shù),聚類算法都存在一個(gè)合理的核半徑區(qū)間,當(dāng)核半徑超出該范圍時(shí),聚類的準(zhǔn)確率會降低;另外,閾值越小,算法的聚類效果越好。 論述了自適應(yīng)Mean Shift算法(Adaptive Mean Shift,AMS)的原理,通過實(shí)驗(yàn)證明了核函數(shù)、初始核半徑以及迭代次數(shù)對聚類算法的影響。使用高斯核函數(shù)時(shí),核半徑初值的選擇對聚類影響較大,使用Epanechnikov核函數(shù)時(shí),核半徑初值對聚類影響較小,與前者相比,它的分類準(zhǔn)確率較低;另外,增大迭代次數(shù),可以改善聚類效果。與MeanShift算法相比,AMS算法具有較好的聚類效果。 提出了基于自適應(yīng)Mean Shift質(zhì)心偏移的結(jié)構(gòu)健康狀態(tài)監(jiān)測方法,該方法將無損傷狀態(tài)的質(zhì)心作為基準(zhǔn),用某一狀態(tài)的質(zhì)心與基準(zhǔn)質(zhì)心的偏移量判斷結(jié)構(gòu)是否發(fā)生損傷以及損傷程度。實(shí)驗(yàn)表明:與基準(zhǔn)質(zhì)心距離越遠(yuǎn),結(jié)構(gòu)的損傷程度越嚴(yán)重。因此用質(zhì)心偏移量可以有效地評估結(jié)構(gòu)的健康狀態(tài)。
[Abstract]:With the development of science and technology, machinery and equipment are becoming more and more complex, the level of automation is becoming higher and higher, and the role and influence of machinery and equipment in modern industrial production are becoming greater and greater, and the costs associated with them are becoming higher and higher.Any failure or failure in the operation of the machine will not only cause great economic losses, but also may lead to casualties.Therefore, the equipment failure condition should be monitored in time to make it run safely and economically.In this paper, based on the adaptive Mean Shift clustering algorithm, the health state monitoring technology of mechanical structure is studied.The signal preprocessing methods: time domain index, frequency domain index and wavelet packet transform are studied.The experimental results show that when the rolling bearing failure occurs, the time domain and frequency domain indexes will change, and different types of damage and damage degree will have obvious difference between time domain and frequency index.The energy distribution of the vibration signals with different types of damage is decomposed by wavelet packet transform, so the dimension of vibration signals can be reduced by extracting the time-domain, frequency-domain and wavelet packet indexes of the vibration signals.Effectively describes different types of fault states.The method of monitoring health state based on energy entropy is studied. The experimental results show that the wavelet packet energy entropy can effectively identify the fault state and damage degree, and can be used to monitor the health state of rolling bearing.The principle of Mean Shift algorithm is discussed, and the effects of kernel function, kernel radius and threshold on clustering algorithm are studied experimentally.Kernel function affects the accuracy of clustering analysis and the number of iterations of the algorithm. For each kernel function, the clustering algorithm has a reasonable kernel radius interval. When the kernel radius exceeds this range, the clustering accuracy will be reduced.The smaller the threshold, the better the clustering effect of the algorithm.The principle of adaptive Mean Shift algorithm is discussed. The effects of kernel function, initial kernel radius and number of iterations on the clustering algorithm are proved by experiments.When Gao Si kernel function is used, the choice of initial value of kernel radius has a great influence on clustering. When Epanechnikov kernel function is used, the initial value of kernel radius has less effect on clustering, compared with the former, its classification accuracy is lower; in addition, the number of iterations is increased.The clustering effect can be improved.Compared with MeanShift algorithm, it has better clustering effect.A method of structural health state monitoring based on adaptive Mean Shift centroid migration is proposed. The centroid of non-damaged state is used as the reference, and the deviation of centroid and reference centroid of a certain state is used to judge whether the structure is damaged or not and the degree of damage.The experimental results show that the longer the distance from the reference centroid, the more serious the damage degree of the structure is.Therefore, the centroid deviation can be used to evaluate the health status of the structure effectively.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TH165.3;TH133.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張景異;朱美臣;楊青;;基于小波包熵和ISODATA的滾動軸承故障診斷[J];工業(yè)儀表與自動化裝置;2012年02期
2 趙曉靜;陳兆學(xué);王志禎;;基于Mean Shift方法的肝臟CT圖像的自動分割[J];中國醫(yī)學(xué)影像技術(shù);2010年12期
3 黃家祥;李紹滋;成運(yùn);張帆;;Mean Shift自適應(yīng)步長的改進(jìn)[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
4 陳果;;滾動軸承早期故障的特征提取與智能診斷[J];航空學(xué)報(bào);2009年02期
5 李功燕;陳曉鵬;李斌;田原;;基于Xscale和多DSP的智能視頻監(jiān)控系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];計(jì)算機(jī)工程與設(shè)計(jì);2009年02期
6 郭磊;陳進(jìn);;小波包熵在設(shè)備性能退化評估中的應(yīng)用[J];機(jī)械科學(xué)與技術(shù);2008年09期
7 程發(fā)斌;湯寶平;趙玲;;最優(yōu)Morlet小波濾波及其在機(jī)械故障特征分析中的應(yīng)用[J];中國機(jī)械工程;2008年12期
8 田廣;唐力偉;欒軍英;康海英;田昊;;基于時(shí)頻分布的行星齒輪箱滾動軸承故障診斷研究[J];機(jī)械強(qiáng)度;2007年01期
9 陸春月,王俊元;機(jī)械故障診斷的現(xiàn)狀與發(fā)展趨勢[J];機(jī)械管理開發(fā);2004年06期
10 程軍圣,于德介,鄧乾旺,楊守;連續(xù)小波變換在滾動軸承故障診斷中的應(yīng)用[J];中國機(jī)械工程;2003年23期
相關(guān)碩士學(xué)位論文 前7條
1 范廣露;基于回聲狀態(tài)網(wǎng)絡(luò)的設(shè)備健康狀態(tài)監(jiān)測與預(yù)測方法[D];長安大學(xué);2012年
2 劉浩;基于聲發(fā)射技術(shù)的貨車滾動軸承故障診斷研究[D];中南大學(xué);2010年
3 鐘鑫;基于邏輯回歸和高斯混合模型的設(shè)備故障診斷技術(shù)研究與應(yīng)用[D];北京化工大學(xué);2010年
4 柴斌;突發(fā)人群聚集事件智能視頻監(jiān)控[D];電子科技大學(xué);2010年
5 姜長龍;基于Graph Cuts圖像分割的Mean Shift目標(biāo)跟蹤算法研究[D];西安電子科技大學(xué);2010年
6 常松;機(jī)械設(shè)備結(jié)構(gòu)應(yīng)力在線監(jiān)測無線數(shù)據(jù)傳輸研究[D];武漢理工大學(xué);2009年
7 雷金波;基于邏輯回歸和支持向量機(jī)的設(shè)備狀態(tài)退化評估與趨勢預(yù)測研究[D];上海交通大學(xué);2008年
本文編號:1746543
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1746543.html