毛細(xì)泵技術(shù)用于工業(yè)余熱回收系統(tǒng)中的實(shí)驗(yàn)研究
本文選題:余熱回收 + 毛細(xì)泵 ;參考:《中南大學(xué)》2011年碩士論文
【摘要】:毛細(xì)泵系統(tǒng)目前廣泛應(yīng)用于航天器的熱控制和電子器件的散熱,其工作原理與熱管相似,是一種利用工質(zhì)相變換熱進(jìn)行遠(yuǎn)距離傳熱的裝置,但與熱管相比,毛細(xì)泵系統(tǒng)具有更強(qiáng)的傳熱能力和抗重力性能?紤]到毛細(xì)泵系統(tǒng)的諸多優(yōu)點(diǎn),本文以其在中低溫工業(yè)余熱回收中的應(yīng)用為目的,設(shè)計(jì)了一套以水為工質(zhì)的平板式毛細(xì)泵系統(tǒng),并對(duì)其性能進(jìn)行了實(shí)驗(yàn)研究。 為減小毛細(xì)泵系統(tǒng)與熱源之間的熱阻,蒸發(fā)器設(shè)計(jì)成平板型,分為可拆裝的上板和下板。為研究側(cè)壁導(dǎo)熱對(duì)平板型蒸發(fā)器運(yùn)行情況的影響,采用VOF多相流模型對(duì)蒸發(fā)器進(jìn)行了數(shù)值模擬,發(fā)現(xiàn)減小下板側(cè)壁厚度或者使用較小導(dǎo)熱系數(shù)的材料作為蒸發(fā)器下板能夠減少蒸發(fā)器側(cè)壁的導(dǎo)熱量,避免毛細(xì)芯下部液體工質(zhì)氣化導(dǎo)致的系統(tǒng)失效。本文選擇了黃銅作為蒸發(fā)器上板材料,聚四氟乙烯作為下板材料,濾紙作為毛細(xì)芯材料。 對(duì)本文毛細(xì)泵系統(tǒng)進(jìn)行的性能研究包括:?jiǎn)?dòng)性能、運(yùn)行穩(wěn)定性、熱源方向的影響、抗重力高度、傳熱效率以及兩蒸發(fā)器并聯(lián)的運(yùn)行情況。結(jié)果表明:系統(tǒng)具有良好的啟動(dòng)性能和運(yùn)行穩(wěn)定性,未出現(xiàn)溫度波動(dòng)現(xiàn)象;不同熱源方向?qū)ο到y(tǒng)運(yùn)行情況無(wú)明顯影響;系統(tǒng)抗重力高度達(dá)到0.6m,能滿足對(duì)抗重力高度要求較低場(chǎng)合的應(yīng)用;系統(tǒng)的實(shí)際傳熱效率約為70%,蒸發(fā)器與冷凝器之間的溫差對(duì)傳熱效率有較大影響;兩蒸發(fā)器并聯(lián)的系統(tǒng)能夠成功運(yùn)行,表明毛細(xì)泵系統(tǒng)具有能將分散熱源集中的性能。 毛細(xì)泵系統(tǒng)是傳熱裝置,為對(duì)系統(tǒng)傳導(dǎo)出的熱能進(jìn)行利用,本文將溫差發(fā)電器與毛細(xì)泵系統(tǒng)相結(jié)合,設(shè)計(jì)了一套能夠?qū)⒐I(yè)余熱回收并轉(zhuǎn)換為電能的裝置,并通過(guò)實(shí)驗(yàn)研究了該裝置的熱電轉(zhuǎn)換效率。最后,針對(duì)鋁電解槽側(cè)壁余熱的回收利用,設(shè)計(jì)了一整套熱能導(dǎo)出、發(fā)電以及電能控制系統(tǒng),理論分析了其余熱利用效率可達(dá)3.5%,電解一噸鋁能產(chǎn)生電能19.8kWh,具有一定的經(jīng)濟(jì)效益。
[Abstract]:Thermal control of capillary pump system is widely used in spacecraft and the heat dissipation of electronic devices, the working principle of the heat pipe and is similar to that of a device using refrigerant phase-change heat transfer heat transfer distance, but compared with the heat pipe, the heat transfer capacity of capillary pump system has stronger anti gravity performance and considering the advantages. The capillary pump system, for the purpose of its application in low-temperature industrial waste heat, a plate type capillary pump system based on water propellant is designed, and its performance was studied.
To decrease the thermal resistance between the capillary and heat pump system, the evaporator design is flat, divided into upper plate and the lower plate can be disassembled. In order to study the effect of side wall heat conduction to the evaporator, the VOF multiphase flow model of evaporator is simulated, found under reduced plate side wall thickness or smaller the thermal conductivity of materials as the evaporator plate can reduce the thermal capacity of evaporator side wall, avoid failure system of liquid vaporization under the wick. The lead brass material as the evaporator plate, Teflon as the plate material, the filter paper as the wick material.
Study on the performance of the CPL include: running stability, starting performance, the influence of heat source direction, anti gravity height, the heat transfer efficiency and the operation of two parallel evaporators. The results show that the system has good startup performance and operational stability, without the temperature fluctuation; different source direction has no obvious effect on the operation of the system system; anti gravity height is 0.6m, can meet the application requirements of low gravity height situations; the actual heat transfer efficiency of the system is about 70%, the temperature difference between the evaporator and the condenser has a great influence on the heat transfer efficiency of the system; two parallel evaporators can run successfully, that CPL can be centralized heat dispersion performance.
CPL is a heat transfer device for heat on the system transmission of the use, the thermoelectric generator and the capillary pump system combined to design a set of industrial waste heat recovery and converted into electrical energy device, and through the experimental study on the thermoelectric conversion efficiency of the device. Finally, the recovery of aluminum electrolytic tank side wall of waste heat utilization, design a set of heat transfer, power generation and power control system, the theoretical analysis of the remaining heat utilization efficiency can reach 3.5% tons of aluminum electrolysis to produce electricity 19.8kWh, has a certain economic benefits.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH38;TK115
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李茂德;屈健;李玉東;李偉江;;接觸效應(yīng)對(duì)小型半導(dǎo)體溫差發(fā)電器性能的影響[J];半導(dǎo)體學(xué)報(bào);2005年12期
2 張加迅,侯增祺;CPL儲(chǔ)液器的溫度調(diào)控方案[J];導(dǎo)彈與航天運(yùn)載技術(shù);2002年03期
3 張加迅,侯增祺;CPL技術(shù)在空間飛行器上的應(yīng)用[J];工程熱物理學(xué)報(bào);2001年03期
4 宣益民,錢吉裕,李強(qiáng);CPL復(fù)合毛細(xì)芯流動(dòng)性能及工質(zhì)特性分析[J];工程熱物理學(xué)報(bào);2003年06期
5 向艷超,侯增祺,張加迅;環(huán)路熱管技術(shù)(LHP)的發(fā)展現(xiàn)狀[J];工程熱物理學(xué)報(bào);2004年04期
6 王金亮,,馬同澤,張正芳;兩相毛細(xì)泵環(huán)中蒸發(fā)傳熱過(guò)程的初步實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);1996年S1期
7 崔大光;;鋁電解槽槽殼側(cè)部散熱計(jì)算方法的研究[J];甘肅冶金;2006年01期
8 趙欽新;王宇峰;王學(xué)斌;惠世恩;徐通模;;我國(guó)余熱利用現(xiàn)狀與技術(shù)進(jìn)展[J];工業(yè)鍋爐;2009年05期
9 曲偉,劉紀(jì)福,侯增祺,陳忠民;毛細(xì)抽吸兩相流體回路(CPL)的啟動(dòng)特性研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);1999年04期
10 韓延民,劉偉,黃曉明,許國(guó)良;CPL冷凝器多孔芯及槽道內(nèi)蒸氣的冷凝分析[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年07期
相關(guān)碩士學(xué)位論文 前4條
1 王強(qiáng);平板式CPL系統(tǒng)仿真研究[D];華中科技大學(xué);2004年
2 鄧芳芳;平板式CPL的數(shù)值模擬與系統(tǒng)仿真[D];華中科技大學(xué);2005年
3 宰軍;平板式CPL的系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)研究[D];華中科技大學(xué);2005年
4 張韜;鋁電解槽側(cè)壁散熱溫差發(fā)電裝置設(shè)計(jì)與仿真優(yōu)化[D];中南大學(xué);2010年
本文編號(hào):1730960
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1730960.html