齒輪系統(tǒng)動力學及參數(shù)合理匹配研究
發(fā)布時間:2018-04-05 05:38
本文選題:行星齒輪 切入點:動力學 出處:《蘭州交通大學》2013年碩士論文
【摘要】:齒輪傳動是一種應用最廣泛的機械傳動。由于齒側間隙、時變嚙合剛度、綜合嚙合誤差和阻尼等因素的存在,從而導致齒輪傳動系統(tǒng)動力學行為具有豐富的非線性特性。行星齒輪傳動相比于普通的齒輪傳動,擁有更高的功重比和更多的傳動比,但因其結構復雜,也有著更多振動和噪聲的問題。 本文以二級齒輪傳動系統(tǒng)和拉威娜式復合行星齒輪傳動系統(tǒng)為對象,綜合考慮影響齒輪系統(tǒng)傳動的主要因素,分別建立了二級齒輪傳動系統(tǒng)和拉威娜式復合行星齒輪傳動系統(tǒng)的非線性動力學模型,并對其進行了數(shù)值仿真,得到了系統(tǒng)模型的分岔圖、最大Lyapunov指數(shù)圖、最大動載荷圖、沖擊狀態(tài)圖、相圖、時間響應圖、動載荷響應圖和FFT圖等。 基于數(shù)值仿真結果,結合非線性理論方法,分別研究了各參數(shù)下系統(tǒng)的分岔特性以及系統(tǒng)在時域和頻域內(nèi)的振動特性,分析了各參數(shù)對系統(tǒng)振動特性的影響及關聯(lián)關系,給出各參數(shù)選擇依據(jù)及優(yōu)選區(qū)間。研究結果表明:隨著激勵頻率的變化系統(tǒng)會展現(xiàn)出豐富的動力學行為,由于齒側間隙等非線性因素的存在,系統(tǒng)還出現(xiàn)了“跳躍”和“激變”等非線性系統(tǒng)所特有的動力學行為,而且“跳躍”和“激變”還是引起齒輪副間動載荷變化的主要因素,有些時候還會導致沖擊狀態(tài)的變化。外載荷逐漸增大時,系統(tǒng)會趨向周期運動,從混沌控制的角度來說,適當?shù)脑龃笸廨d荷可以有效的控制混沌運動的發(fā)生。時變嚙合剛度和阻尼也是影響系統(tǒng)的主要的非線性因素,在一定參數(shù)范圍內(nèi)剛度越大、阻尼越小,系統(tǒng)越容易產(chǎn)生混沌運動,而混沌運動在實際機械系統(tǒng)中是有害的,因此在齒輪系統(tǒng)的動態(tài)設計時要避開混沌運動區(qū)域。綜合嚙合誤差為齒輪在制造和安裝時不可避免的產(chǎn)生實際位置和理想位置的偏差,,這種偏差對齒輪系統(tǒng)是有害的應盡量避免。綜合考慮系統(tǒng)的周期運動狀態(tài)、最大動載荷和齒輪副間的沖擊狀態(tài),本文得出了在一定參數(shù)下系統(tǒng)的理論最佳工作范圍,并給出了嚙合剛度、阻尼以及齒側間隙的最優(yōu)選取方案和區(qū)間,為齒輪的動態(tài)設計提供了理論基礎。
[Abstract]:Mechanical transmission gear transmission is one of the most widely used. Because of the backlash, time-varying mesh stiffness, gear error and damping factors, which leads to dynamic behavior of gear transmission system has rich nonlinear characteristics of planetary gear transmission. Compared with ordinary gear transmission, have a high power weight ratio and more than the drive, but because of its complex structure, also has more vibration and noise problems.
In this paper, the two stage gear transmission system and pull Wella compound planetary gear transmission system as the object, considering the main factors affecting the gear transmission system, a nonlinear dynamics model was established in two stage gear transmission system and pull Wella type compound planetary gear transmission system, and has carried on the numerical simulation, the bifurcation diagram of the system the model, the maximum Lyapunov index, the maximum dynamic load impact diagram, state diagram, phase diagram, time response diagram, dynamic load response and FFT diagram.
Based on the numerical simulation results, combined with the nonlinear theory, the vibration characteristics of the bifurcation characteristics respectively under different parameters of the system and in the time domain and frequency domain research, analysis the influence of parameters on the vibration characteristics of the system and the relationship between the parameters selection and optimization interval. The results show that with the change of system frequency will show a rich dynamic behavior, because of backlash nonlinear factors, the system also appeared in the "dynamic behavior characteristic of jump" and "crisis" of nonlinear systems, and "jump" and "crisis" was caused mainly by the change of dynamic load of the gear pair, some time will cause changes the impact of the state. The load increases, the system will tend to periodic motion, chaotic control from the point of view, the appropriate increase of load can be effectively controlled The occurrence of chaotic motions. The main factors of nonlinear time-varying meshing stiffness and damping effect of the system is, in a certain parameter range greater stiffness, the damping is small, the system is prone to chaos, and chaotic motion is harmful in the actual mechanical system, so the dynamic design of gear system to to avoid the chaotic motion area. Meshing error is deviation from the actual position and the ideal position in gear manufacturing and installation is inevitable, the deviation of the gear system is harmful should be avoided. The periodic motion state of the system considering the maximum dynamic impact load and gear pairs, in the certain parameters under the system of the theory of optimum working range, and gives the meshing stiffness, damping and the optimal clearance method and interval, provides a theoretical basis for the dynamic design of the gear.
【學位授予單位】:蘭州交通大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:O322;TH132.41
【參考文獻】
相關期刊論文 前2條
1 毛君;姚麗明;宋寶新;;帶有側隙的行星齒輪傳動動態(tài)特性研究[J];微計算機信息;2011年02期
2 孫智民,沈允文,王三民,李華;星型齒輪傳動系統(tǒng)的非線性動力學分析[J];西北工業(yè)大學學報;2002年02期
本文編號:1713456
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1713456.html
教材專著