無蓄能器型液壓沖擊機構流量匹配關系研究
發(fā)布時間:2018-04-03 19:53
本文選題:沖擊機構 切入點:流量匹配 出處:《上海工程技術大學》2011年碩士論文
【摘要】:液壓沖擊機械是一種靠液壓驅(qū)動使活塞獲得動能,通過撞擊將巖石破碎的工程機械。隨著國家基礎設施建設規(guī)模的擴大,液壓破碎錘、鑿巖機等沖擊機械的應用越來越廣泛。而液壓沖擊機構是這些高速大功率沖擊機械的共同且核心的部分。面對世界范圍的石油緊缺,工程機械必將朝著節(jié)能環(huán)保的方向發(fā)展。目前,液壓沖擊機械多數(shù)裝配在挖掘機上,由本來給鏟斗油缸供油的泵給沖擊機構供油。這種方式并未考慮到?jīng)_擊機構活塞速度變化十分劇烈的工作特點,因此不是最節(jié)能高效的匹配方式。對于帶蓄能器的液壓沖擊機構,,蓄能器在沖擊機構工作過程中起到適時吸收或釋放油液的作用。相關文獻表明,即使不配置蓄能器,沖擊機構的沖擊能與帶蓄能器時相比只有微小降低。再加上蓄能器價格昂貴、壽命低等因素,取消蓄能器成為沖擊機械的發(fā)展趨勢。因此,本文以無蓄能器型液壓沖擊機構為研究對象,以輸出的沖擊能最大為主要目標,探討液壓泵與沖擊機構的最佳匹配方式。 本文將無蓄能器型液壓沖擊機構的工作過程分為5個階段,在深入分析工作原理的基礎上,建立了沖擊機構活塞、氮氣室、換向閥芯等元件的動力學方程及液壓油路的油液平衡方程。在Matlab中對簡化的模型進行了求解,得出了活塞速度變化趨勢及所需流量變化趨勢。 在沖擊機構非線性數(shù)學模型的基礎上,應用AMESim軟件結(jié)合功率鍵合圖思想建立了沖擊機構的活塞-缸體、氮氣室、換向閥、變量泵的仿真模型,按照實際物理結(jié)構組合成完整模型。將實測圖紙得到的參數(shù)代入仿真模型進行仿真,得到了不同流量大小和恒流、恒壓、恒功率三種供油方式下的沖擊性能曲線。通過仿真曲線的對比分析,得出了“恒壓泵為沖擊機構的最佳供油方式,供油量越大沖擊能越大”的結(jié)論。 為獲得反映沖擊機構性能的沖擊能、沖擊頻率等數(shù)據(jù),本文設計了基于虛擬儀器的測試系統(tǒng)。測試系統(tǒng)軟件由LabVIEW語言編寫,硬件由傳感器、NI公司的數(shù)據(jù)采集卡等組成。應用設計的測試系統(tǒng)對沖擊機構進行了不同流量大小下的性能測試,獲取了液壓系統(tǒng)壓力、流量、活塞速度、沖擊能、沖擊頻率等數(shù)據(jù)的變化曲線,證明了仿真得出的結(jié)論。 本文的研究成果對現(xiàn)有沖擊機構的選型、節(jié)能高效沖擊機構的開發(fā)有一定的指導意義。
[Abstract]:Hydraulic impact machine is a hydraulic driven by the piston to obtain kinetic energy, the impact will be broken rock engineering machinery. With the expanding scale of national infrastructure construction, hydraulic hammer, impact drill machine is used more and more widely. But the hydraulic impact mechanism is common and core part of the high speed and high power impact machine in the face of the world. The oil shortage, engineering machinery will developtowards energy saving and environmental protection. At present, most of the hydraulic impact machine assembly in excavators, from the original to the bucket cylinder fuel pump for oil to the impact mechanism. This method does not take into account the impact mechanism of piston speed change characteristic is very intense, it is not the most energy saving an efficient matching method. The hydraulic impact mechanism with accumulator, which timely absorb or release the oil used to work in the impact mechanism in the process of storage Related literature shows that even without the configuration of accumulator, the impact mechanism of impact energy with accumulator only slightly reduced. Plus the accumulator is expensive, low life factors, cancel the accumulator become the development trend of mechanical impact. Therefore, this paper takes no type hydraulic impact mechanism the research object of storage, to output the maximum impact energy as the main goal, to explore the best matching of hydraulic pump and the impact mechanism.
The storage process type of hydraulic impact mechanism is divided into 5 stages, based on in-depth analysis on the working principle, established the impact mechanism of the piston, the nitrogen chamber, the oil balance equation and hydraulic reversing valve core components such as. To Jane in the Matlab model is solved. And the trend of piston velocity and required flow rate change trend.
The impact mechanism based on nonlinear mathematical model, using AMESim software combined with the power bond graph is constructed. The impact mechanism of piston cylinder, nitrogen chamber, valve, the simulation model of variable pump, according to the actual physical structure into a complete model. The parameters of simulation model of measured drawings are obtained for different simulation. The size of the flow and constant flow, constant pressure, constant power curve and impact properties of three kinds of oil supply mode. By comparing the simulation curve analysis, the constant pressure pump is the best oil way of the impact mechanism, the greater the impact energy supply is "conclusion.
In order to acquire the performance impact mechanism of impact energy, impact frequency data, this paper designs the test system based on virtual instrument. The test system software is developed by LabVIEW language, the hardware of the NI sensor, the data acquisition card. The test system design on hedge mechanism was carried out to test the performance of different flow size. The hydraulic system pressure, flow, piston velocity, impact energy, impact frequency curve data, proved the simulation conclusion.
The research results of this paper have certain guiding significance for the selection of the existing impact mechanism and the development of energy saving and high efficiency impact mechanism.
【學位授予單位】:上海工程技術大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:TH137.7
【參考文獻】
相關期刊論文 前10條
1 楊務滋;邱海靈;;取消高壓蓄能器的液壓沖擊器動態(tài)仿真[J];中國工程機械學報;2005年04期
2 丁問司;氮爆式液壓沖擊器模糊控制[J];湖南工程學院學報(自然科學版);2001年01期
3 高麗穩(wěn),周志鴻;沖擊機械活塞強度研究的現(xiàn)狀[J];工程機械;2005年01期
4 劉忠;;液壓沖擊機械工作參數(shù)調(diào)節(jié)方法研究[J];工程機械;2006年08期
5 謝良喜;陶平;;液壓錘工作狀態(tài)下活塞的力學模型與應力分析[J];工程機械;2007年05期
6 劉忠;y嚫@
本文編號:1706667
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1706667.html
教材專著