復(fù)雜混流生產(chǎn)線車間規(guī)劃研究
本文選題:復(fù)雜 切入點(diǎn):混流生產(chǎn)線車間系統(tǒng) 出處:《五邑大學(xué)》2012年碩士論文
【摘要】:從20世紀(jì)70年代開(kāi)始,隨著市場(chǎng)開(kāi)始從賣方市場(chǎng)向買方市場(chǎng)開(kāi)始轉(zhuǎn)變,大批量、單品種的生產(chǎn)方式也開(kāi)始變向多品種、小批量的生產(chǎn)方式轉(zhuǎn)化。我國(guó)是一個(gè)制造業(yè)大國(guó),混流生產(chǎn)線車間在我國(guó)制造業(yè)車間比較具有代表性;炝魃a(chǎn)線車間系統(tǒng)的規(guī)劃問(wèn)題是一個(gè)企業(yè)重要的開(kāi)局部分,對(duì)一個(gè)復(fù)雜混流生產(chǎn)線車問(wèn)系統(tǒng)的規(guī)劃研究有著十分實(shí)際的意義。 本文主要是探討一種解決混流生產(chǎn)線車間系統(tǒng)的規(guī)劃問(wèn)題的方法。 首先,運(yùn)用復(fù)雜系統(tǒng)的理論對(duì)混流生產(chǎn)線車間系統(tǒng)進(jìn)行分析,可以知道混流生產(chǎn)線車間系統(tǒng)具有結(jié)構(gòu)復(fù)雜性、組成單元復(fù)雜性、交互環(huán)節(jié)復(fù)雜性和行為復(fù)雜性;炝魃a(chǎn)線車間系統(tǒng)具有復(fù)雜適應(yīng)系統(tǒng)的聚集、非線性、流、多樣性四大特征和標(biāo)識(shí)、內(nèi)部模型、積木塊三大機(jī)制,而混流生產(chǎn)線車間系統(tǒng)是一個(gè)不斷與外界進(jìn)行能量交換的開(kāi)放系統(tǒng),是一個(gè)復(fù)雜適應(yīng)系統(tǒng)。對(duì)于復(fù)雜適應(yīng)系統(tǒng)的理論和研究方法我們都可以對(duì)混流生產(chǎn)線車間系統(tǒng)規(guī)劃問(wèn)題進(jìn)行應(yīng)用。 其次,引入遺傳算法對(duì)傳統(tǒng)的系統(tǒng)布局規(guī)劃方法(SLP)進(jìn)行流程改進(jìn)。由原來(lái)設(shè)備具體面積關(guān)系修改為設(shè)定一個(gè)約束范圍,運(yùn)用物流關(guān)系來(lái)代替。這樣就避免了原來(lái)SLP方案中繪制作業(yè)單位位置相關(guān)圖和面積相關(guān)圖時(shí)需不斷的手工調(diào)整和修正這一流程,使得SLP更加快捷有效;同時(shí)還降低了由人的主觀因素帶來(lái)的影響。 再次,在遺傳算法應(yīng)用到SLP流程中,通過(guò)增加一層編碼層(工藝—單元)來(lái)進(jìn)行約束,使得設(shè)備、單元、工藝三者集成考慮,系統(tǒng)性更加合理,運(yùn)算更加快捷。 最后,通過(guò)基于遺傳算法和SLP相結(jié)合的規(guī)劃方法進(jìn)行實(shí)例分析,與單獨(dú)使用遺傳算法的規(guī)劃方法進(jìn)行結(jié)果比較,可以看出不僅改善了流程、減少了運(yùn)行時(shí)間而且規(guī)劃目標(biāo)更加接近公司要求;與單獨(dú)使用傳統(tǒng)的SLP方法(公司原來(lái)用的方案)進(jìn)行結(jié)果比較,可以看出物流成本降低50%左右,在過(guò)程中避免了原來(lái)SLP方案中繪制作業(yè)單位位置相關(guān)圖和面積相關(guān)圖時(shí)需不斷的手工調(diào)整和修正這一流程,有效降低了人的主觀因素帶來(lái)的影響,非常符合公司日標(biāo)規(guī)劃需求。 相關(guān)數(shù)值實(shí)驗(yàn)表明本文提出的解決混流生產(chǎn)線車問(wèn)系統(tǒng)的規(guī)劃問(wèn)題的方法—基于遺傳算法和SLP相結(jié)合的方法能夠更加有效地使全局物流費(fèi)用得以降低,提高了設(shè)計(jì)質(zhì)量,簡(jiǎn)化了設(shè)計(jì)步驟,取得了滿意的效果。具有一定的實(shí)際應(yīng)用價(jià)值和推廣意義。
[Abstract]:Since 1970s, as the market began to change from the seller's market to the buyer's market, the mode of production of large quantity and single variety began to change to multi-variety and small-batch mode of production.China is a large manufacturing country, the mixed production line workshop in our manufacturing workshop is more representative.The planning of hybrid production line workshop system is an important starting part of an enterprise, which has a very practical significance for the planning research of a complex mixed production line vehicle system.This paper mainly discusses a method to solve the planning problem of mixed flow production line workshop system.Firstly, the theory of complex system is used to analyze the hybrid production line workshop system. It can be known that the hybrid production line workshop system has structural complexity, component unit complexity, interaction complexity and behavior complexity.The workshop system of mixed-flow production line has four characteristics of complex adaptive system, such as aggregation, nonlinearity, flow and diversity, internal model and building block.The hybrid production line workshop system is an open system for energy exchange with the outside world and is a complex adaptive system.For the theory and research method of complex adaptive system, we can apply to the problem of workshop system planning of mixed flow production line.Secondly, genetic algorithm is introduced to improve the traditional system layout planning method (SLP).Change from original equipment specific area relation to set a restriction range, use logistics relation to replace.This avoids the need for manual adjustment and correction of the original SLP scheme when drawing the job unit position correlation and area correlation maps, which makes the SLP more efficient and efficient, and reduces the influence of human subjective factors.Thirdly, when genetic algorithm is applied to SLP process, a layer of coding layer (process-unit) is added to constrain, so that the integration of equipment, unit and process is considered, and the system is more reasonable and the operation is faster.Finally, through the case analysis based on the combination of genetic algorithm and SLP, compared with the planning method using genetic algorithm alone, we can see that not only improved the process,The running time is reduced and the planning goal is closer to the requirements of the company. Compared with the results of the traditional SLP method used by the company alone, we can see that the logistics cost is reduced by about 50%.In the process, it avoids the need of manual adjustment and correction of the original SLP scheme to draw the job unit position correlation map and the area correlation map, which effectively reduces the impact of human subjective factors and meets the needs of the company's daily standard planning.The related numerical experiments show that the method proposed in this paper, which is based on genetic algorithm and SLP, can effectively reduce the global logistics cost and improve the design quality.The design steps are simplified and satisfactory results are obtained.It has certain practical application value and popularization significance.
【學(xué)位授予單位】:五邑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH181
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程乾生;屬性層次模型AHM——一種新的無(wú)結(jié)構(gòu)決策方法[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年01期
2 曹振新,朱云龍,宋崎;制造系統(tǒng)的設(shè)備布局方法[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2005年03期
3 李志華;曾海紅;陳立平;趙文禮;;多單元制造系統(tǒng)布局設(shè)計(jì)[J];工程設(shè)計(jì)學(xué)報(bào);2007年03期
4 李健心;;注塑車間布局的設(shè)計(jì)及優(yōu)化[J];塑料制造;2006年11期
5 陳呈頻;畢娜;施祺方;蘭秀菊;;車間設(shè)施優(yōu)化布置方案[J];工業(yè)工程與管理;2007年01期
6 張建軍;底振華;張利;;基于分形理論的E-型車間布局研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年07期
7 劉震;層次分析模型AHM及其應(yīng)用[J];河北建筑科技學(xué)院學(xué)報(bào);2003年03期
8 周亦波,李志華,戴同,鐘毅芳;單元制造系統(tǒng)布局模型及其求解[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年01期
9 馬光鋒;奚文;董志文;;模糊數(shù)學(xué)在物流系統(tǒng)規(guī)劃評(píng)價(jià)中的應(yīng)用[J];煤礦機(jī)械;2006年02期
10 甄苓,王來(lái)生;屬性層次模型的決策方法與應(yīng)用[J];中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào);2000年06期
相關(guān)碩士學(xué)位論文 前2條
1 胡震;發(fā)動(dòng)機(jī)車間布局優(yōu)化設(shè)計(jì)研究[D];合肥工業(yè)大學(xué);2005年
2 楊再龍;發(fā)動(dòng)機(jī)廠車間布局設(shè)計(jì)與仿真[D];上海海事大學(xué);2007年
,本文編號(hào):1703387
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1703387.html