天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)械論文 >

橋式起重機(jī)先進(jìn)控制研究

發(fā)布時(shí)間:2018-03-30 22:29

  本文選題:橋式起重機(jī) 切入點(diǎn):小車吊重系統(tǒng) 出處:《北京化工大學(xué)》2011年碩士論文


【摘要】:橋式起重機(jī)作為現(xiàn)代物流裝備之一,廣泛應(yīng)用于各種工業(yè)場(chǎng)合,消除或控制吊重的搖擺對(duì)提高起重機(jī)工作效率和安全性具有重要意義。吊重防搖控制技術(shù)是起重機(jī)作為現(xiàn)代物流裝備所必需具備的功能之一,對(duì)橋式起重機(jī)系統(tǒng)的動(dòng)力學(xué)分析是解決起重機(jī)快速對(duì)位和吊重防遙問(wèn)題的基礎(chǔ)。 本文首先采用拉格朗日方法推導(dǎo)具有普遍意義的橋式起重機(jī)系統(tǒng)的動(dòng)力學(xué)方程——三維、二維和一維橋式起重機(jī)系統(tǒng)的數(shù)學(xué)模型。在合理的范圍內(nèi)對(duì)起重機(jī)系統(tǒng)的非線性動(dòng)力學(xué)方程進(jìn)行簡(jiǎn)化,得到橋式起重機(jī)系統(tǒng)的線性動(dòng)力學(xué)方程——三維、二維和一維橋式起重機(jī)系統(tǒng)的線性模型,為研究橋式起重機(jī)防擺問(wèn)題提供了理論依據(jù)。 針對(duì)吊重?cái)[角等變量現(xiàn)場(chǎng)測(cè)量的難度和成本,利用小車位置信息設(shè)計(jì)全狀態(tài)觀測(cè)器。通過(guò)設(shè)置全狀態(tài)觀測(cè)器重構(gòu)相關(guān)狀態(tài)變量空間,從而將包括小車位置在內(nèi)的所有狀態(tài)變量的估計(jì)信息,提供給防搖控制系統(tǒng)。 論文采用極點(diǎn)配置的狀態(tài)反饋控制方法、線性二次型調(diào)節(jié)器(LQR)最優(yōu)控制及比例積分微分(PID)控制方法,對(duì)起重機(jī)防擺問(wèn)題進(jìn)行仿真研究。仿真結(jié)果表明,上述現(xiàn)代控制方法具有一定的局限性。在對(duì)神經(jīng)網(wǎng)絡(luò)理論進(jìn)行分析研究的基礎(chǔ)上,將徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)的自適應(yīng)PID控制算法應(yīng)用于橋式起重機(jī)吊重防擺系統(tǒng)中。利用二個(gè)RBF神經(jīng)網(wǎng)絡(luò)自適應(yīng)PID控制器對(duì)小車的位置和負(fù)載的擺動(dòng)分別進(jìn)行控制。通過(guò)神經(jīng)網(wǎng)絡(luò)的自適應(yīng)學(xué)習(xí)能力,在線整定PID控制器的比例(P)、積分(I)和微分(D)三個(gè)內(nèi)部參數(shù),實(shí)現(xiàn)具有最佳參數(shù)組合的PID控制。仿真結(jié)果表明,該算法對(duì)起重機(jī)定位無(wú)靜差、無(wú)超調(diào),同時(shí)迅速消除負(fù)載的擺動(dòng)。
[Abstract]:As one of the modern logistics equipment, bridge crane is widely used in various industrial occasions. It is of great significance to eliminate or control the swaying of hoisting load, which is one of the necessary functions of crane as modern logistics equipment, and it is of great significance to improve the efficiency and safety of crane. The dynamic analysis of bridge crane system is the foundation to solve the problem of quick alignment and hoisting remote control. In this paper, the Lagrangian method is used to deduce the dynamic equation of the bridge crane system. The mathematical model of two-dimensional and one-dimensional bridge crane system. The nonlinear dynamic equation of crane system is simplified within a reasonable range, and the linear dynamic equation of bridge crane system is obtained. The linear model of two-dimensional and one-dimensional bridge crane system provides a theoretical basis for studying the anti-swinging problem of bridge crane. In view of the difficulty and cost of the field measurement of swinging angle and other variables, the full state observer is designed by using the vehicle position information, and the relevant state variable space is reconstructed by setting the full state observer. Thus, the estimation information of all state variables, including the position of the car, is provided to the anti-rolling control system. In this paper, the state feedback control method of pole assignment, the optimal control of linear quadratic regulator LQR and the PID-proportional integral differential control method are used to simulate the anti-swinging problem of crane. These modern control methods have some limitations. Based on the analysis of neural network theory, The adaptive PID control algorithm of radial basis function (RBF) neural network is applied to the crane crane anti-swing system. Two RBF neural network adaptive PID controllers are used to control the position and load swing of the trolley respectively. Through the adaptive learning ability of neural networks, In order to realize the PID control with the best combination of parameters, the three internal parameters of the PID controller are adjusted on line. The simulation results show that the algorithm has no static error and no overshoot for the crane positioning, and the load swing is eliminated rapidly at the same time.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH215

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李小凡;;基于RBF神經(jīng)網(wǎng)絡(luò)整定的PID控制器設(shè)計(jì)[J];兵工自動(dòng)化;2009年01期

2 金耀初,諸靜,,蔣靜坪;神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)模糊控制及其應(yīng)用[J];電工技術(shù)學(xué)報(bào);1994年04期

3 鐘斌;程文明;吳曉;梁劍;;橋門式起重機(jī)吊重防搖狀態(tài)反饋控制系統(tǒng)設(shè)計(jì)[J];電機(jī)與控制學(xué)報(bào);2007年05期

4 李偉,呂景惠;起重機(jī)線性二次型最優(yōu)消擺控制[J];電氣傳動(dòng);2003年02期

5 沈李建;集裝箱裝卸橋吊具電子防搖系統(tǒng)[J];港口裝卸;1998年06期

6 宮赤坤,閆雪;基于RBF神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)控制[J];上海理工大學(xué)學(xué)報(bào);2005年05期

7 蘇晴;張氫;;岸邊集裝箱起重機(jī)防搖及速度控制研究[J];建筑機(jī)械;2008年07期

8 ;A practical fuzzy controllers scheme of overhead crane[J];Journal of Control Theory and Applications;2005年03期

9 李樹(shù)江;胡韶華;吳海;;基于LQR和變論域模糊控制的吊車防擺控制[J];控制與決策;2006年03期

10 朱剛,周賢偉,張凱,尤昌德,胡保生;一種神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)控制結(jié)構(gòu)與算法[J];自動(dòng)化學(xué)報(bào);2000年04期

相關(guān)博士學(xué)位論文 前1條

1 黃凱;起重機(jī)自適應(yīng)智能防擺控制方法及其仿真研究[D];南京林業(yè)大學(xué);2007年

相關(guān)碩士學(xué)位論文 前4條

1 胡韶華;橋式吊車防擺控制技術(shù)研究[D];沈陽(yáng)工業(yè)大學(xué);2006年

2 王兆剛;基于RBF神經(jīng)網(wǎng)絡(luò)自適應(yīng)PID的焙燒爐溫度控制算法研究[D];蘭州理工大學(xué);2008年

3 王sユ

本文編號(hào):1687962


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1687962.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7742e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com