天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機械論文 >

基于粗糙集的分層有向圖故障診斷方法研究及其應(yīng)用

發(fā)布時間:2018-03-22 21:38

  本文選題:熱力系統(tǒng) 切入點:符號有向圖 出處:《太原理工大學(xué)》2012年碩士論文 論文類型:學(xué)位論文


【摘要】:在火電機組故障中,熱力系統(tǒng)發(fā)生故障的機率很大,因此熱力系統(tǒng)的安全性會對機組整體運行的安全經(jīng)濟性產(chǎn)生巨大影響。由于熱力系統(tǒng)結(jié)構(gòu)復(fù)雜、運行工況多變,在進行故障診斷過程中難以建立和完善故障知識庫,因此對熱力系統(tǒng)進行故障診斷研究十分必要。 本文將圖論和粗糙圖理論與符號有向圖(SDG)相結(jié)合,使得SDG模型更加易于診斷,從而提高SDG故障診斷的準(zhǔn)確性。首先針對SDG多義性推理導(dǎo)致的分辨率低,大系統(tǒng)診斷速度慢、實時性差等問題,將故障傳播圖與SDG兩種方法結(jié)合起來描述系統(tǒng),提出了一種分層符號有向圖(SDG)故障診斷模型。該分層符號有向圖故障診斷模型既具有SDG自身的完備性,又具有故障傳播圖的固有屬性,可以反映系統(tǒng)部件之間的連接關(guān)系,同時將分層技術(shù)、節(jié)點壓縮技術(shù)、約束傳播技術(shù)和對中尋優(yōu)技術(shù)四種優(yōu)選測試點技術(shù)加入改進的符號有向圖模型來構(gòu)建分層SDG模型,并采用回溯搜索策略搜索獨立相容通路進行故障診斷。以上幾種優(yōu)選測試點技術(shù)利用了系統(tǒng)設(shè)備內(nèi)部各個部件之間故障傳播的特性,在推理過程中可以減少候選測試點集合,提高搜索故障源的效率。該方法能夠區(qū)分相同故障模式下診斷不明且難分辨的故障及可能出現(xiàn)的“組合爆炸”問題,所得結(jié)論與傳統(tǒng)SDG診斷結(jié)果進行對比,表明該方法較傳統(tǒng)方法優(yōu)越。最后將該方法應(yīng)用到離心泵與液位系統(tǒng),驗證了其方法的正確性和有效性。 其次,針對使用SDG進行故障分析時所獲信息不完備、不精確的特征,將粗糙集挖掘不確定性問題的優(yōu)點加入SDG故障診斷過程中,提出了一種基于粗糙圖的分層SDG故障診斷模型。該模型包括部件節(jié)點粗糙關(guān)系圖、粗糙分層SDG的故障圖生成算法及故障最大流分析算法三部分。實例驗證和模型分析表明該模型較傳統(tǒng)SDG故障診斷模型更能反映實際情況,所獲診斷結(jié)論更加準(zhǔn)確。最后,將基于粗糙圖的分層SDG故障診斷模型用于熱力系統(tǒng),對其不同關(guān)系層面之間的故障進行診斷,結(jié)果表明該模型能夠降低熱力設(shè)備動態(tài)特性故障知識獲取的復(fù)雜度,及時準(zhǔn)確識別熱力系統(tǒng)早期故障和輕微故障,這些改進都能在很大程度上提高熱力系統(tǒng)診斷效率,促進熱力系統(tǒng)故障診斷技術(shù)不斷的向前發(fā)展。 本文將系統(tǒng)分層理論和粗糙圖、粗糙網(wǎng)絡(luò)理論引入SDG故障診斷,提出了一種基于粗糙圖的分層SDG故障診斷模型,使得SDG搜索推理發(fā)生沖突的概率在一定程度上減少甚至避免,提高了傳統(tǒng)SDG故障診斷搜索推理的分辨率。該方法用于熱力系統(tǒng),實例結(jié)論表明其行之有效、具有良好的通用性,對提高機組運行的安全性和經(jīng)濟性起到一定作用,推動了故障診斷智能化的不斷發(fā)展。
[Abstract]:In the fault of thermal power unit, the probability of thermal system failure is very large, so the safety of thermal system will have a great impact on the safety and economy of the whole operation of the unit, because the structure of the thermal power system is complex and the operating conditions are changeable. In the process of fault diagnosis, it is difficult to establish and perfect the fault knowledge base, so it is necessary to study the fault diagnosis of thermal system. In this paper, graph theory and rough graph theory are combined with symbolic directed graph (SDG) to make the SDG model easier to diagnose and improve the accuracy of SDG fault diagnosis. Firstly, because of the low resolution caused by SDG polysemy reasoning, the diagnosis speed of large system is slow. In this paper, the fault propagation graph and SDG are combined to describe the system, and a hierarchical symbolic directed graph (SDG) fault diagnosis model is proposed, which has the completeness of SDG itself. It also has the inherent properties of the fault propagation graph, which can reflect the connection relationship between the system components, and at the same time, it will be stratified technology, node compression technology, The constraint propagation technique and the four kinds of test point optimization techniques, which include the improved symbolic directed graph model, are added to construct the hierarchical SDG model. And the backtracking search strategy is used to search the independent compatible path for fault diagnosis. The above techniques make use of the characteristics of fault propagation between the components of the system equipment, and can reduce the set of candidate test points in the reasoning process. To improve the efficiency of searching fault sources, this method can distinguish the unknown and difficult faults in the same fault mode from the "combined explosion" problem that may occur. The results obtained are compared with the traditional SDG diagnosis results. It is shown that this method is superior to the traditional method. Finally, the method is applied to the centrifugal pump and liquid level system, and the correctness and effectiveness of the method are verified. Secondly, aiming at the incomplete and inaccurate information obtained in fault analysis with SDG, the advantages of rough set mining uncertainty problem are added to the process of SDG fault diagnosis. A hierarchical SDG fault diagnosis model based on rough graph is proposed. There are three parts of fault graph generation algorithm and fault maximum flow analysis algorithm of rough layered SDG. The example verification and model analysis show that the model can reflect the actual situation better than the traditional SDG fault diagnosis model, and the diagnosis results are more accurate. The hierarchical SDG fault diagnosis model based on rough graph is applied to the fault diagnosis of thermal system. The results show that the model can reduce the complexity of fault knowledge acquisition of thermal equipment dynamic characteristics. These improvements can improve the efficiency of thermal system diagnosis to a great extent and promote the continuous development of thermal system fault diagnosis technology. In this paper, the hierarchical theory of system, rough graph and rough network theory are introduced into SDG fault diagnosis, and a hierarchical SDG fault diagnosis model based on rough graph is proposed, which can reduce or even avoid the probability of collision of SDG search reasoning to a certain extent. The resolution of traditional SDG fault diagnosis search reasoning is improved. The method is used in thermal system. The example shows that the method is effective, has good generality, and plays a certain role in improving the safety and economy of unit operation. It promotes the development of fault diagnosis intelligence.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TM621;TH165.3

【參考文獻】

相關(guān)期刊論文 前10條

1 劉永建;朱劍英;夏洪山;;基于粗神經(jīng)網(wǎng)絡(luò)的民用飛機故障診斷[J];北京航空航天大學(xué)學(xué)報;2009年08期

2 馬良玉,王兵樹,高建強,馬永光,佟振聲;大旁路布置高壓給水加熱器系統(tǒng)故障模糊知識庫及其神經(jīng)網(wǎng)絡(luò)的診斷研究[J];動力工程;2002年01期

3 齊曉軒;紀(jì)建偉;原忠虎;;FCM屬性約簡方法在汽輪機故障診斷中的應(yīng)用[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2011年02期

4 張貝克;鄭然;馬昕;吳重光;;間歇過程動態(tài)SDG建模[J];化工學(xué)報;2008年07期

5 楊帆,蕭德云;大規(guī)模復(fù)雜系統(tǒng)的定性SDG建模方法[J];化工自動化及儀表;2005年05期

6 田靜宜;潘宏俠;楊麗金;;粗糙集理論在柴油機故障診斷中的應(yīng)用[J];化工自動化及儀表;2011年01期

7 黃衛(wèi)東,王克昌,黃衛(wèi)東;基于定性和定量關(guān)系的液體火箭發(fā)動機故障診斷[J];航空動力學(xué)報;1996年03期

8 宋其江;徐敏強;王日新;;基于分層有向圖的航天器故障診斷[J];航空學(xué)報;2009年06期

9 楊帆;蕭德云;吳占松;;大規(guī)模復(fù)雜系統(tǒng)的遞階SDG模型描述及故障分析[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2009年S1期

10 劉金福;于達仁;;粗糙集學(xué)習(xí)機器泛化性能控制的結(jié)構(gòu)風(fēng)險最小化方法[J];計算機科學(xué);2009年12期

相關(guān)博士學(xué)位論文 前10條

1 趙慧敏;柴油機非穩(wěn)態(tài)振動信號分析與智能故障診斷研究[D];天津大學(xué);2010年

2 邱赤東;船舶異步電機遠程故障診斷技術(shù)的研究[D];大連海事大學(xué);2008年

3 張錚;不完備不協(xié)調(diào)信息條件下的設(shè)備智能故障診斷[D];華中科技大學(xué);2007年

4 李建洋;基于粗糙集與前饋網(wǎng)絡(luò)的案例智能系統(tǒng)的研究[D];合肥工業(yè)大學(xué);2009年

5 向秀橋;現(xiàn)代智能計算及其在水電機組故障診斷中的應(yīng)用[D];華中科技大學(xué);2009年

6 譚旭;擴展粗糙集模型及其在煙葉質(zhì)量預(yù)測與評價中的應(yīng)用[D];國防科學(xué)技術(shù)大學(xué);2009年

7 饒泓;基于多源信息融合與Rough集理論的液壓機故障診斷方法研究[D];南昌大學(xué);2009年

8 呂蓬;旋轉(zhuǎn)機械故障模式識別方法研究[D];華北電力大學(xué)(北京);2010年

9 黃正華;模糊粗糙集模型的若干拓展[D];武漢大學(xué);2010年

10 馬君華;粗糙集屬性約簡和聚類算法及其在電力自動化中的應(yīng)用研究[D];華中科技大學(xué);2010年

,

本文編號:1650541

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1650541.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5e669***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com