基于微造型的發(fā)動機(jī)滑動軸承摩擦學(xué)性能研究
本文選題:微造型 切入點:發(fā)動機(jī)滑動軸承 出處:《重慶大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:在滑動軸承表面進(jìn)行微造型以改善其摩擦學(xué)性能是國際上剛剛興起的方法。研究微造型滑動軸承的摩擦學(xué)性能,能為滑動軸承的設(shè)計提供新的思路,,從而提高發(fā)動機(jī)滑動軸承乃至整個發(fā)動機(jī)的性能。因此,基于微造型的發(fā)動機(jī)滑動軸承摩擦學(xué)性的研究具有一定的理論研究與實際應(yīng)用價值。 本文針對雷諾方程求解表面微造型動壓潤滑問題的局限性,采用了N-S方程,對微造型徑向滑動軸承進(jìn)行了流體動力學(xué)分析,研究了表面微造型對滑動軸承潤滑性能的影響,并對微造型的幾何參數(shù)、布局參數(shù)以及形狀類型進(jìn)行了優(yōu)化,最后對干摩擦狀態(tài)下的微造型軸承進(jìn)行了接觸分析。論文主要研究內(nèi)容如下: ①對不同偏心率,不同轉(zhuǎn)速下的微造型軸承進(jìn)行了分析。計算結(jié)果表明:合適的微造型可以增加軸承的油膜最大壓力和承載能力、減小其摩擦系數(shù);在低偏心率下,微造型軸承產(chǎn)生的附加動壓效應(yīng)更加明顯; ②分析了微造型的幾何尺寸以及布局對軸承潤滑性能的影響。分析結(jié)果表明:適當(dāng)減小微造型的深度或長度、增加微造型的寬度,有利于增加軸承的油膜最大壓力和承載能力、減小軸承的摩擦系數(shù);存在使得軸承承載能力最大或摩擦系數(shù)最小的最優(yōu)微造型布局密度或布局面積;在油膜最大壓力附近布置微造型,更有利于增加軸承承載能力、減小軸承的摩擦系數(shù); ③從溝槽微造型和坑狀微造型這兩個角度研究了不同幾何類型的微造型對軸承潤滑性能的影響。計算結(jié)果表明:不同類型的微造型對軸承潤滑性能的影響有所差異;相比于矩形和梯形溝槽微造型,半球形和三角形溝槽微造型更有利于增加軸承的油膜最大壓力和承載能力、減小軸承的摩擦系數(shù);相比于矩形和三角形坑狀微造型,半球形和圓柱形坑狀微造型更有利于增加軸承的承載能力、減小軸承的摩擦系數(shù); ④利用有限元方法,對不同載荷、不同摩擦系數(shù)下的微造型軸承進(jìn)行了接觸分析,并討論了微造型的幾何尺寸、密度以及形狀對軸承接觸性能的影響。計算結(jié)果表明:微造型會增加軸承的最大等效應(yīng)力、最大接觸應(yīng)力和最大接觸變形;增加微造型的寬度、密度會增加軸承的最大等效應(yīng)力、最大接觸應(yīng)力和最大接觸變形;不同類型微造型軸承的接觸性能有所差異。
[Abstract]:In order to improve the tribological properties of sliding bearings, it is a new method to improve their tribological properties on the surface of sliding bearings. The study of tribological properties of microsculpt sliding bearings can provide a new way of thinking for the design of sliding bearings. Therefore, the tribological research of engine sliding bearing based on micro-modeling has certain theoretical research and practical application value. Aiming at the limitation of solving the dynamic lubrication problem of surface micro modeling by Reynolds equation, the N-S equation is used to analyze the hydrodynamics of micro shaped radial sliding bearing, and the influence of surface micro modeling on lubricating performance of journal bearing is studied in this paper. The geometric parameters, layout parameters and shape types of micro-modeling are optimized. Finally, the contact analysis of micro-modeling bearings under dry friction is carried out. The main contents of this paper are as follows:. The results show that the suitable micro molding can increase the maximum pressure and bearing capacity of the oil film and reduce the friction coefficient of the bearing under the condition of low eccentricity, low eccentricity, low eccentricity, low eccentricity, low eccentricity, low eccentricity, low eccentricity, and low eccentricity. The additional dynamic pressure effect is more obvious. 2. The influence of geometry size and layout of micro molding on bearing lubrication performance is analyzed. The results show that reducing the depth or length of micro molding properly and increasing the width of micro molding are beneficial to increase the maximum pressure and bearing capacity of the bearing oil film. Reducing the friction coefficient of the bearing, the existence of the optimal micromodeling layout density or layout area that makes the bearing bearing capacity maximum or the minimum friction coefficient, and the arrangement of the micro-molding near the maximum pressure of the oil film is more conducive to increasing bearing bearing capacity. Reducing the friction coefficient of the bearing; (3) the influence of different geometric types on the lubrication performance of bearings is studied from the angles of grooving and crater micromodeling. The results show that the effects of different types of micro-modeling on the lubricating properties of bearings are different. Compared with rectangular and trapezoidal grooves, hemispherical and triangular grooves are more advantageous to increase the maximum oil film pressure and bearing capacity of bearings and reduce the friction coefficient of bearings. The hemispherical and cylindrical craters are more favorable to increase bearing capacity and reduce the friction coefficient of bearings. (4) the contact analysis of the bearing with different load and friction coefficient is carried out by using the finite element method, and the geometric dimensions of the micro modeling are discussed. The results show that the maximum equivalent stress, the maximum contact stress and the maximum contact deformation of the bearing are increased by the micro-molding, and the width of the micro-molding is increased by the influence of the density and the shape on the contact performance of the bearing. The density will increase the maximum equivalent stress, maximum contact stress and maximum contact deformation of the bearing, and the contact performance of different types of micro-shaped bearings will be different.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH133.3;TH117
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱華;歷建全;陸斌斌;馬晨波;;變密度微圓坑表面織構(gòu)在往復(fù)運動下的減摩作用[J];東南大學(xué)學(xué)報(自然科學(xué)版);2010年04期
2 高東海;劉q;袁根福;;激光微加工凹坑表面形貌摩擦特性的試驗研究[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2008年10期
3 李敦橋;劉小君;黃毅;劉q;;規(guī)則凹坑表面的連通性分析[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2009年11期
4 于新奇,蔡仁良;激光加工多孔端面機(jī)械密封的動壓分析[J];華東理工大學(xué)學(xué)報;2004年04期
5 封云;叢茜;金敬福;張宏濤;任露泉;;溝槽非光滑表面流場的數(shù)值分析[J];吉林大學(xué)學(xué)報(工學(xué)版);2006年S2期
6 胡雄海,洪玉芳,汪久根;微溝槽表面的滑動軸承性能分析[J];機(jī)械設(shè)計與研究;2002年02期
7 林子光,郭炎;表面形貌對抗擦傷能力影響的實驗研究[J];機(jī)械設(shè)計;1999年11期
8 林子光,謝輝;改善機(jī)械零件表面形貌的實驗研究[J];機(jī)械設(shè)計;1995年05期
9 汪家道,陳大融,孔憲梅;規(guī)則凹坑表面形貌潤滑研究[J];摩擦學(xué)學(xué)報;2003年01期
10 馬晨波;朱華;張文謙;姬翠翠;;往復(fù)條件下織構(gòu)表面的摩擦學(xué)性能研究[J];摩擦學(xué)學(xué)報;2011年01期
相關(guān)博士學(xué)位論文 前1條
1 馬晨波;織構(gòu)化表面的潤滑計算模型及減摩特性研究[D];中國礦業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 高東海;激光微造型凹坑表面形貌摩擦特性的研究[D];合肥工業(yè)大學(xué);2008年
2 李敦橋;表面形貌表征及激光微造型表面摩擦特性研究[D];合肥工業(yè)大學(xué);2009年
本文編號:1650086
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1650086.html