動葉端區(qū)軸向動量控制體分析方法及其在周向槽機匣處理中的應(yīng)用
本文選題:軸流壓氣機 切入點:周向槽機匣處理 出處:《中國科學(xué)院研究生院(工程熱物理研究所)》2014年博士論文 論文類型:學(xué)位論文
【摘要】:多年來,周向槽機匣處理的擴穩(wěn)效果和擴穩(wěn)機理一直是葉輪機械領(lǐng)域持久熱議的題目。然而囿于壓氣機流動失穩(wěn)的復(fù)雜過程及各異性,周向槽機匣處理的設(shè)計難以形成普適準(zhǔn)則,現(xiàn)階段周向槽的實際應(yīng)用設(shè)計仍需依靠大量試驗建立完備的數(shù)據(jù)庫供以篩選。為縮短研制周期,本文從實際應(yīng)用角度出發(fā),立足于對動葉端區(qū)對壓氣機流動失穩(wěn)的影響機理的認(rèn)識,發(fā)展了一種作用于動葉端區(qū)的控制體分析方法;趬簹鈾C內(nèi)部流動的三維數(shù)值模擬,鎖定動葉端區(qū)軸向動量為反映流場穩(wěn)定性的特征量,通過對動葉端區(qū)建立控制體量化提取穩(wěn)定性特征量,由此比較不同周向槽方案擴穩(wěn)能力,并利用實驗驗證了該方法在亞音速壓氣機環(huán)境和跨音速壓氣機環(huán)境下的有效性和準(zhǔn)確性。 研究表明,絕大多數(shù)軸流壓氣機屬于葉尖敏感型,發(fā)生失速時主流和葉頂泄漏流的交界面自轉(zhuǎn)子前緣溢出,產(chǎn)生突尖形失速先兆,而推動這一交界面在節(jié)流過程中不斷向前緣移動的機制是動葉端區(qū)的軸向動量平衡。基于這一認(rèn)識,本文提出,加槽后,主流與泄漏流交界面自前緣溢出的趨勢將被抑制,壓氣機的穩(wěn)定性邊界得以拓寬。這一現(xiàn)象可通過加槽后動葉端區(qū)的軸向動量分布反映出來。進而,不同周向槽方案的擴穩(wěn)能力則可通過對比端區(qū)軸向動量的分布判斷出來。因此,為捕捉這一密切反映壓氣機流動穩(wěn)定性的特征參數(shù),本文提出了在動葉端區(qū)建立一系列離散控制體的方法,用以量化壓氣機動葉端區(qū)的軸向動量分布情況。以光壁為基準(zhǔn),可通過比較不同周向槽邊界下動葉端區(qū)軸向動量分布的改變情況,對其相應(yīng)的擴穩(wěn)能力進行定量比較,為周向槽初期工程設(shè)計提供初選手段。 本文選擇一典型的跨音速風(fēng)扇轉(zhuǎn)子NASA Rotor67為研究示例介紹控制體分析方法的建立。首先利用單通道定常/非定常全三維數(shù)值模擬得到壓氣機內(nèi)部流場,然后在動葉端區(qū)合理的徑向范圍內(nèi)設(shè)置一系列軸向離散的控制體,提供軸向動量沿轉(zhuǎn)子葉頂軸向的定量分布。同時,依次不斷累加控制體單元上的軸向動量,可得到一條形似鐘形的動量曲線,簡稱為“鐘形曲線”。該曲線的頂點可視為主流和泄漏流交界面在三維空間上的積分效果。對光壁結(jié)構(gòu)和機匣處理結(jié)構(gòu)節(jié)流過程中的鐘形曲線予以考察,發(fā)現(xiàn)隨流量不斷減小,鐘形曲線的頂點不斷前移,這與節(jié)流過程中主流/泄漏流交界面前移機制相互吻合。加槽后,在同一流量下,鐘形曲線的頂點軸向位置被后推,此時主流/泄漏流交界面在周向平均意義上的位置比光壁更靠近通道下游,這一表現(xiàn)反映了周向槽抑制了主流/泄漏流交界面的前溢趨勢,加入處理機匣的壓氣機仍可保持穩(wěn)定運行;趯@一擴穩(wěn)機理的認(rèn)識,提出對比光壁近失速狀態(tài)下不同周向槽方案的鐘形曲線,可評估出不同方案的擴穩(wěn)能力。 在提出動葉端區(qū)軸向動量的控制體分析用于評估周向槽擴穩(wěn)能力的方法后,分別在一臺亞音速和一臺跨音速壓氣機環(huán)境下利用實驗進一步證實了這一判斷方法的有效性。在實驗室自有低速軸流壓氣機實驗臺IET-LAC上,利用動葉端區(qū)控制體分析方法比較了三組雙槽的擴穩(wěn)能力并通過實驗驗證了鐘形曲線預(yù)測的結(jié)果正確。選取美國圣母大學(xué)跨音速軸流壓氣機ND-TAC為高速壓氣機轉(zhuǎn)子研究示例,利用鐘形曲線對其設(shè)計的七種不同周向槽方案的擴穩(wěn)能力進行預(yù)判,并通過實驗證實了七種不同周向槽方案的擴穩(wěn)裕度提升值與鐘形曲線的預(yù)估結(jié)果完全一致。進一步,借助于在亞音速和跨音速壓氣機環(huán)境下的周向槽實驗結(jié)果發(fā)現(xiàn),利用鐘形曲線的幾個要素可以判斷周向槽擴穩(wěn)的水平,并可在同一擴穩(wěn)水平下進一步區(qū)分更細致的擴穩(wěn)能力高低。 考慮到周向槽機匣處理的設(shè)計還應(yīng)兼顧壓氣機的效率和穩(wěn)定性,在以量化的軸向動量來描述周向槽對壓氣機穩(wěn)定裕度影響的啟發(fā)下,開展周向槽對轉(zhuǎn)子峰值效率影響的初步研究。根據(jù)不可逆損失的嚴(yán)格熱力學(xué)定義,確定熵產(chǎn)為描述壓氣機流動損失的特征物理量,并利用氣動熱力學(xué)和流體力學(xué)基本公式,推導(dǎo)了用于壓氣機流動控制體形式的熵產(chǎn)表達式。研究中發(fā)現(xiàn),有槽和無槽情況、不同周向槽處理情況的絕熱效率分布在動葉端區(qū)體現(xiàn)明顯差別。因此,對動葉端區(qū)和周向槽內(nèi)分別建立控制體,量化了峰值效率工況下,不同周向槽方案引起的熵產(chǎn)變化。研究結(jié)果表明,周向槽內(nèi)和動葉端區(qū)是壓氣機內(nèi)部流場中具有較高流動損失的兩個區(qū)域;不同軸向位置處的周向槽對葉頂流動損失的影響有顯著不同。周向槽改善了動葉端區(qū)局部的流動,降低了這一部分的不可逆流動損失,而槽內(nèi)的復(fù)雜流動結(jié)構(gòu)又引起了額外的熵產(chǎn)。周向槽對壓氣機峰值效率的影響是這兩方面作用的綜合效果。 在上述研究基礎(chǔ)上,進一步探討了周向槽幾何對擴穩(wěn)作用的影響。在若干周向槽的幾何因素中,選取了三個有代表性的幾何參數(shù)——周向槽的槽深、槽數(shù)和軸向位置。借助周向槽與葉片通道的唯一接觸面——開口面為橋梁,分別考察了不同幾何邊界下,周向槽內(nèi)和動葉端區(qū)控制體上的軸向動量的分布。研究發(fā)現(xiàn),在三個幾何因素中,周向槽的軸向位置對擴穩(wěn)效果的影響最大。通過對各項軸向力的分析中發(fā)現(xiàn),處理機匣的動葉端區(qū)軸向動量分布被改變的根本原因是動葉端區(qū)的負(fù)載被改變。在以上工作基礎(chǔ)上,為跨音壓氣機J69優(yōu)化多槽方案。利用動葉端區(qū)控制體分析方法快速的對比了多種不同周向槽結(jié)構(gòu),得到了兼顧擴穩(wěn)和效率性能的周向槽方案。
[Abstract]:Over the years, the circumferential expansion stabilization effect and steady expansion mechanism of grooved casing treatment has been the field of turbomachinery enduring hot topic. However, due to the compressor flow loss of stability and the complex process of specific design of circumferential grooved casing treatment is difficult to form a universal criterion to design the practical application stage week slot still need to rely on a large number of tests to establish a complete database for screening. In order to shorten the development cycle, from the angle of practical application, based on the blade end zone lost the understanding of the mechanism of stable effect on the compressor flow, the development of a role in the control of tip region body dynamic analysis method. The three-dimensional numerical simulation of compressor based on the flow, locking blade end zone for axial momentum characteristics reflect the flow stability, through the establishment of control volume extraction amount on the dynamic stability characteristics of quantitative tip region, which compared the different circumferential groove design ability and stability. The effectiveness and accuracy of the method in subsonic compressor environment and transonic compressor environment are verified by experiments.
The research shows that the vast majority of axial flow compressor belongs to the tip sensitive interface, stall the mainstream and the tip leakage flow from the rotor leading edge overflow, sudden stall inception and pointed, promote the interface mechanism during throttling to front movement is the axial momentum balance rotor end zone. This understanding, based on adding groove, mainstream and leakage flow interface from the front overflow trend will be suppressed, the stability boundary of compressor can be widened. This phenomenon can be added through the slot after the dynamic axial momentum distribution of leaf end zone reflected. Then, different circumferential grooves for the steady expansion ability can be tell from distribution of axial momentum region. Therefore, to capture this closely reflect the flow stability of the compressor characteristic parameters is presented in this paper method of blade end zone in the establishment of a series of discrete control body, used to The momentum distribution of axial compressor rotor tip region. By the light wall as a benchmark, dynamic changes of the momentum distribution of axial blade end zone to the slot boundaries by comparing different weeks, the steady expansion ability for quantitative comparison, for the week beginning players to slot initial engineering design.
This choice of transonic fan rotor NASA Rotor67 a typical example of the control to establish an analysis method. Firstly, using single channel steady / unsteady numerical simulation to get the compressor internal flow, and then moving in the radial range of tip region within a reasonable set up a series of axial dispersion control, quantitative distribution of axial the rotor tip axial momentum. At the same time, in order to control the constant axial momentum body unit, can get a bell shape curve of momentum, referred to as a "bell curve". The curve of the vertex based visual flow and leakage flow integral effect in the interface of 3D space. Examines light wall structure the bell curve structure and casing treatment in throttling process, found with the flow rate decreases, the bell curve vertex constantly moves forward, and the throttling of the mainstream / leakage flow interface before Shift mechanism coincide with each other. And in the same tank after discharge, the axial position of the bell curve by the back vertex, the mainstream / leakage flow interface in the circumferential direction on average position closer to the wall than the light channel downstream, which reflected the circumferential groove inhibited the mainstream / leakage flow interface before the spill, the compressor can be added with casing to maintain stable operation. Understanding of the steady expansion mechanism based on the comparison of light wall near stall condition under different circumferential groove for bell shaped curve, evaluated the steady expansion ability of different schemes.
In the proposed control body movement of tip region of axial momentum analysis method for assessment of circumferential groove steady expansion ability, respectively in a subsonic and transonic compressor environment using a further experiment confirmed the validity of this judgment method. In the laboratory has a low speed axial compressor test rig IET-LAC. The tip area control analysis compared three sets of double slot expansion stability is verified by experiment results. The bell curve predicts the correct selection of Madonna University transonic compressor ND-TAC high speed compressor rotor research example, the design of seven different circumferential groove scheme to predict the steady expansion ability the bell curve, and confirmed by experiments in seven different circumferential groove scheme expanding stability margin and enhance the value of the bell curve prediction results are completely consistent. Further, with the help of subsonic and transonic Experimental results of circumferential grooves in a fast compressor environment show that several elements of bell shaped curve can be used to identify the level of circumferential trough expansion, and further distinguish the more detailed stabilizing ability at the same level of stability.
Considering the design of circumferential grooved casing treatment should also take into account the efficiency and stability of the compressor, in order to quantify the axial momentum to describe the circumferential groove to inspire the influence to the compressor stability margin, pilot study on the circumferential groove of the rotor peak efficiency influence. According to the strict thermodynamic definition of irreversibility, entropy is determined the production for the characteristics of physical quantity description of compressor flow loss, and the use of pneumatic basic formula of thermodynamics and fluid mechanics, formulas for the entropy expression of compressor flow control form. The study found that there is no groove and groove, the circumferential groove processing the adiabatic efficiency distribution in the rotor end zone reflects obviously the difference. Therefore, on the aerodynamic end zone and circumferential groove respectively to establish the control body, quantify the peak efficiency under the condition of entropy production change different circumferential groove caused. The results show that the circumferential groove and rotor end The two area is the area with higher flow loss of the compressor internal flow in different axial positions; Zhou Xiangcao tip flow loss is significantly different. The circumferential slot improves dynamic flow tip area, reduce this part of the irreversible loss of flow, and complex flow structure inside the tank and cause the extra entropy production. Effects of circumferential grooves on the compressor is the peak efficiency of the comprehensive effect of the two functions.
Based on the above research, to further explore the effect of circumferential groove geometry on the steady expansion effect. In a plurality of circumferential groove geometric factors, selected three representative -- are the geometric parameters of circumferential groove depth of the groove, groove number and axial position. Only by means of contact surface circumferential groove and blade passage the opening of the bridge, the different geometric boundary, the circumferential groove and rotor end control on axial momentum. The study found that in three geometric factors, effects of circumferential grooves on the axial position of the maximum stability enhancement effect. Through the analysis of the force the shaft, the rotor casing end zone momentum distribution is changed is the fundamental reason for the axial load rotor end zone is changed. On the basis of the above work, for transonic compressor J69 optimization scheme. By using the dynamic control of multi slot tip area rapid analytical method for comparing the The circumferential grooves with different circumferential grooves are obtained, and the scheme of circumferential grooves with both stability and efficiency is obtained.
【學(xué)位授予單位】:中國科學(xué)院研究生院(工程熱物理研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TH453
【參考文獻】
相關(guān)期刊論文 前10條
1 寧方飛,徐力平;Spalart—Allmaras湍流模型在內(nèi)流流場數(shù)值模擬中的應(yīng)用[J];工程熱物理學(xué)報;2001年03期
2 杜朝輝 ,劉志偉;輪轂處理對單級壓氣機性能的影響[J];航空動力學(xué)報;1991年01期
3 劉大響;對加快發(fā)展我國航空動力的思考[J];航空動力學(xué)報;2001年01期
4 陳大光,張津,朱之麗;推重比15一級發(fā)動機有關(guān)總體性能的關(guān)鍵技術(shù)和難點分析[J];航空動力學(xué)報;2001年01期
5 楚武利,朱俊強,劉志偉;折線斜縫式機匣處理的實驗研究及機理分析[J];航空動力學(xué)報;1999年03期
6 梁春華 ,劉紅霞;美國超高效發(fā)動機技術(shù)計劃[J];航空發(fā)動機;2002年04期
7 方昌德;航空發(fā)動機的發(fā)展前景[J];航空發(fā)動機;2004年01期
8 劉大響;航空動力發(fā)展的歷史性機遇[J];航空發(fā)動機;2005年02期
9 盧新根;楚武利;朱俊強;吳艷輝;劉志偉;;軸流壓氣機機匣處理研究進展及評述[J];力學(xué)進展;2006年02期
10 吳艷輝;楚武利;張皓光;;軸流壓氣機失速初始擾動的研究進展[J];力學(xué)進展;2008年05期
相關(guān)博士學(xué)位論文 前1條
1 黃旭東;跨音速壓氣機失速機理及機匣處理的數(shù)值研究[D];清華大學(xué);2010年
,本文編號:1619669
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1619669.html