基于小波分析的高速CNC集成制造工況健康監(jiān)控技術(shù)研究
本文關(guān)鍵詞: 小波分析 健康監(jiān)控 高速加工 神經(jīng)網(wǎng)絡 出處:《河北工業(yè)大學》2011年碩士論文 論文類型:學位論文
【摘要】:隨著高速加工技術(shù)的發(fā)展,制造過程中的工況監(jiān)控所遇到的問題也越來越突出,且直接影響了生產(chǎn)效率,因此對高速CNC集成制造過程進行監(jiān)控,才能保證產(chǎn)品質(zhì)量,提高加工效率,延長刀具使用壽命,確保人員和設備的安全。把結(jié)構(gòu)健康監(jiān)控的概念引入到高速CNC集成制造系統(tǒng)中,可用一些工況信息(如切削力、扭矩、功率、主軸變速、振動、熱變形等)來描述數(shù)控加工過程中的機床的各種狀態(tài)。高速CNC集成制造健康監(jiān)控涉及到主軸發(fā)熱監(jiān)測、滾珠絲杠發(fā)熱監(jiān)測、刀具磨損狀態(tài)監(jiān)測、工件加工狀態(tài)監(jiān)測等。本文著重研究刀具的工況健康監(jiān)控方法,提出的方法也使用與其他方面。 本文利用振動傳感器對刀具磨損信號進行采集,并對所采集的信號進行分析處理,通過對比不同磨損程度的刀具信號,提取與刀具磨損相關(guān)的特征值。時域方面,提取出信號的均方根作為特征值;時頻域方面,采用了小波包分解頻帶能量監(jiān)測法,對振動信號進行了頻段能量統(tǒng)計,提取出信號的特征頻段能量作為特征值。再此基礎上建立基于BP神經(jīng)網(wǎng)絡和D-S證據(jù)理論相結(jié)合的車刀故障綜合診斷模型,豐富和發(fā)展了刀具磨損監(jiān)控技術(shù)。最后在上述研究的基礎上,構(gòu)建了VC與MATLAB混合編程開發(fā)系統(tǒng)數(shù)據(jù)處理平臺
[Abstract]:With the development of high speed machining technology, the problems of working condition monitoring in manufacturing process are more and more prominent, and directly affect the production efficiency. Therefore, monitoring the high speed CNC integrated manufacturing process can ensure the product quality. The concept of structural health monitoring is introduced into the high speed CNC integrated manufacturing system, and some working conditions information (such as cutting force, torque, power, spindle speed change, etc.) can be used to improve the machining efficiency, prolong the tool life and ensure the safety of the personnel and equipment. High speed CNC integrated manufacturing health monitoring involves spindle heating monitoring, ball screw heating monitoring, tool wear monitoring, This paper focuses on the research of the tool condition health monitoring method, the proposed method is also used and other aspects. In this paper, the tool wear signal is collected by vibration sensor, and the collected signal is analyzed and processed. By comparing the tool signal with different wear degree, the characteristic value related to tool wear is extracted. The root mean square (RMS) of the signal is extracted as the eigenvalue, and in time-frequency domain, the frequency band energy monitoring method based on wavelet packet decomposition is used to calculate the frequency band energy of the vibration signal. The characteristic frequency band energy of the signal is extracted as the eigenvalue, and then a comprehensive fault diagnosis model of turning tool based on BP neural network and D-S evidence theory is established. The tool wear monitoring technology is enriched and developed. Finally, the data processing platform of VC and MATLAB hybrid programming system is constructed based on the above research.
【學位授予單位】:河北工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:TH166
【參考文獻】
相關(guān)期刊論文 前10條
1 楊廣勇;超高速切削時的T-v關(guān)系與切削力[J];北京理工大學學報;1996年03期
2 陳曉智;李蓓智;楊建國;;基于小波分析的聲發(fā)射刀具狀態(tài)判析[J];傳感器與微系統(tǒng);2006年06期
3 陳明,袁人煒,薛秉源,張明賢,史興寬,張書橋;鋁合金高速銑削中切削溫度動態(tài)變化規(guī)律的試驗研究[J];工具技術(shù);2000年05期
4 沈壯行;入世之后我國工具企業(yè)面臨的真正挑戰(zhàn)及其對策[J];工具技術(shù);2002年01期
5 楊家鵬;胡華麗;姜俊;;基于切削力的切削狀態(tài)智能監(jiān)控技術(shù)及應用[J];廣西輕工業(yè);2010年08期
6 姜澄宇,徐鴻鈞,張幼楨,浦學鋒;切削顫振在線監(jiān)測的試驗研究[J];航空學報;1989年10期
7 馬平,李吉科,李鍛能,肖曙紅;角接觸球軸承高速電主軸的熱源特性及對策[J];機械工程師;2004年04期
8 李小俚,姚英學,袁哲俊;基于小波模糊神經(jīng)網(wǎng)絡刀具監(jiān)控系統(tǒng)研究[J];機械工程學報;1998年01期
9 張愛林;劉學春;王冬梅;王敬仁;張慶亮;李鵬飛;鞠曉晨;;2008奧運會羽毛球館新型預應力弦支穹頂結(jié)構(gòu)全壽命健康監(jiān)控研究[J];建筑結(jié)構(gòu)學報;2007年06期
10 鄭海波,陳心昭,李志遠,朱忠奎,何世娣;小波神經(jīng)網(wǎng)絡故障診斷系統(tǒng)的設計與應用[J];農(nóng)業(yè)機械學報;2002年01期
相關(guān)碩士學位論文 前2條
1 李文釗;飛行器健康監(jiān)控技術(shù)實驗室方案及驗證模型[D];西北工業(yè)大學;2004年
2 薛小鋒;飛行器結(jié)構(gòu)疲勞可靠性及航天器機械臂健康監(jiān)控研究[D];西北工業(yè)大學;2007年
,本文編號:1523548
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1523548.html