天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機械論文 >

高精度氣動同步系統(tǒng)研究

發(fā)布時間:2018-02-14 13:41

  本文關(guān)鍵詞: 氣動伺服位置控制 運動軌跡跟蹤控制 同步控制 自適應(yīng)魯棒控制 交叉耦合 死區(qū)補償 LuGre模型 摩擦力補償 出處:《浙江大學(xué)》2013年博士論文 論文類型:學(xué)位論文


【摘要】:因為具有功率-質(zhì)量比大、清潔、結(jié)構(gòu)簡單、易維護等優(yōu)點,氣動同步技術(shù)在機器人、工業(yè)自動化和醫(yī)療機械等領(lǐng)域具有廣泛的應(yīng)用前景。但是氣動系統(tǒng)具有很多不利于精確控制的弱點,如強非線性、參數(shù)時變性和模型不確定性等,如何提高氣動位置伺服系統(tǒng)的軌跡跟蹤控制性能和如何實現(xiàn)多執(zhí)行元件同步控制仍是當(dāng)前氣動技術(shù)研究的一個重要方向。本論文以一個雙氣缸的氣動同步系統(tǒng)為研究對象,以實現(xiàn)單缸的高精度運動軌跡跟蹤控制和雙缸的精確位置同步控制為研究目標(biāo),利用理論分析和實驗相結(jié)合的方法,從建立精確描述系統(tǒng)特性的非線性模型入手,深入的研究了氣動伺服位置控制策略和氣動同步控制方法。 為實現(xiàn)氣缸的高精度運動軌跡跟蹤控制,本論文首先基于LuGre模型對氣缸摩擦力進行了補償,并提出了一種含死區(qū)補償?shù)淖赃m應(yīng)魯棒控制策略。該控制器采用雙觀測器來估計摩擦力內(nèi)狀態(tài),通過在線最小二乘參數(shù)估計來減小模型中參數(shù)不確定性,并利用非線性魯棒控制來抑制參數(shù)估計誤差、未建模動態(tài)和干擾的影響,從而保證一定的魯棒瞬態(tài)性能和高的穩(wěn)態(tài)跟蹤精度。由于使用了標(biāo)準(zhǔn)投影映射技術(shù),參數(shù)自適應(yīng)律與非線性魯棒控制器兩個部分可以獨立進行設(shè)計。鑒于系統(tǒng)模型中的不確定性是非匹配的,采用了反步法來設(shè)計非線性魯棒控制器。此外,由于控制器能在線辨識閥的死區(qū)參數(shù)并對死區(qū)進行補償,算法的可移植性好。在此基礎(chǔ)上,將交叉耦合思想與直接/間接集成自適應(yīng)魯棒控制結(jié)合起來,提出一種基于交叉耦合方法的自適應(yīng)魯棒氣動同步控制策略,實現(xiàn)了雙缸的精確位置同步控制。 本論文共分六章,現(xiàn)將各章內(nèi)容分述如下: 第一章,詳細(xì)介紹了氣動伺服位置控制的研究現(xiàn)狀,指出提高氣缸的軌跡跟蹤控制性能仍是當(dāng)前氣動技術(shù)研究的一個重要方向;簡述了氣動同步控制的研究背景和研究現(xiàn)狀;最后概述了本課題的研究意義、研究難點以及主要研究內(nèi)容。 第二章,描述了氣動同步系統(tǒng)實驗裝置的硬件組成;研究了氣體通過控制閥閥口的流動、氣缸兩腔內(nèi)氣體的熱力過程和氣缸的摩擦力特性等問題,建立了氣動同步系統(tǒng)的非線性模型,為控制器設(shè)計做好準(zhǔn)備;通過參數(shù)辨識,獲得了控制閥閥口開度與控制電壓的關(guān)系以及缸內(nèi)空氣與氣缸內(nèi)壁間的熱傳導(dǎo)率;為滿足高精度氣動伺服位置控制時基于模型的摩擦力補償需要,建立了氣缸的LuGre動態(tài)摩擦模型并對其中參數(shù)進行了辨識。 第三章,給出氣動同步系統(tǒng)某一軸的非線性狀態(tài)空間模型,并分析系統(tǒng)的控制難點,歸納出為實現(xiàn)氣缸的高精度運動軌跡跟蹤控制,所采用的控制方法必須考慮模型中參數(shù)不確定性和不確定非線性的影響。首先為氣動位置伺服系統(tǒng)設(shè)計一個魯棒自適應(yīng)控制器和一個確定性魯棒控制器,通過分析二者的優(yōu)點和研究如何將它們有機結(jié)合,提出了一種氣動位置伺服系統(tǒng)的自適應(yīng)魯棒運動軌跡跟蹤控制策略。它采用在線參數(shù)的自適應(yīng)調(diào)節(jié)減小模型參數(shù)不確定性,同時通過魯棒控制律抑制不確定非線性的影響,從而達(dá)到較好的動態(tài)性能和較高的穩(wěn)態(tài)跟蹤精度。實驗證明,自適應(yīng)魯棒控制器是有效的,控制性能高于文獻中已有的研究成果,且對系統(tǒng)參數(shù)變化和干擾具有較強的性能魯棒性。 第四章,在上一章研究的自適應(yīng)魯棒控制器基礎(chǔ)上,通過引入一個動態(tài)補償型快速自適應(yīng)項,設(shè)計了直接/間接集成自適應(yīng)魯棒控制器,提高了系統(tǒng)瞬態(tài)跟蹤性能;針對比例方向控制閥存在顯著的死區(qū)且不同閥的死區(qū)特性差異較大的情況,提出一種含死區(qū)補償?shù)闹苯樱g接集成自適應(yīng)魯棒控制器,在線辨識閥的死區(qū)參數(shù)并通過構(gòu)造死區(qū)逆對死區(qū)進行補償,提高了算法的可移植性;為進一步提高氣缸低速運行時的軌跡跟蹤控制精度,研究了基于LuGre模型的氣缸摩擦力補償方法以及如何將該補償方法與直接/間接集成自適應(yīng)魯棒控制方法結(jié)合起來。最后,通過實驗證明了上述氣動位置伺服系統(tǒng)的高精度運動軌跡跟蹤控制策略的有效性。跟蹤幅值為0.125m、頻率為0.5Hz正弦軌跡時,最大穩(wěn)態(tài)跟蹤誤差為1.32mm,平均穩(wěn)態(tài)跟蹤誤差為0.68mm,瞬態(tài)過程最大跟蹤誤差為1.61mm;跟蹤低速正弦軌跡時,最大穩(wěn)態(tài)跟蹤誤差為0.59mm,平均穩(wěn)態(tài)跟蹤誤差為0.21mm。 第五章,提出一種基于交叉耦合方法的自適應(yīng)魯棒氣動同步控制策略,既保證多氣缸精確同步又不影響系統(tǒng)中每一氣缸的軌跡跟蹤控制精度,基本思想是:將同步誤差反饋至每個軸控制器的輸入端與軌跡跟蹤誤差組成一個新的稱為耦合誤差的變量,為每個軸分別設(shè)計直接/間接集成自適應(yīng)魯棒控制器使耦合誤差收斂,實現(xiàn)軌跡跟蹤誤差和同步誤差同時收斂。給出了控制器的詳細(xì)設(shè)計步驟,并以雙氣缸同步為例,通過實驗證明控制器的有效性和性能魯棒性。跟蹤幅值為0.125m、頻率為0.5Hz的正弦期望軌跡時,最大同步誤差為1.25mm左右,平均同步誤差為0.67mm左右。 第六章,對本論文的主要工作、研究結(jié)論和創(chuàng)新點進行了總結(jié),并對未來的研究工作進行了展望。
[Abstract]:Because has the power to mass ratio is large, clean, simple structure, easy maintenance, pneumatic synchronization technology in robot, and has wide application prospect in industrial automation fields and medical machinery. But the pneumatic system has many not conducive to precise control weaknesses, such as strong nonlinear, time-varying parameters and model uncertainty so, how to improve the pneumatic position servo system of tracking control performance and how to realize multi actuator synchronization control is the pneumatic technology research is an important direction. In this paper, a double cylinder pneumatic synchronization system as the research object, the exact location of the trajectory in order to achieve high precision tracking control of single cylinder and double cylinder synchronous control as the research object, using the method of combination of theoretical analysis and experiment, starting from the nonlinear model accurately describes system characteristics, in-depth study of the pneumatic servo position The control strategy and the pneumatic synchronous control method are used.
To realize high precision trajectory tracking control of the pneumatic cylinder, this paper based on the LuGre model is used to compensate the friction of the cylinder, this paper proposes an adaptive robust control strategy with dead time compensation. The controller adopts double observer to estimate the friction within the state, through the least squares estimation in line parameters to reduce the model parameter uncertainty, and by using the nonlinear robust control to suppress the influence of parameter estimation error, unmodeled dynamics and disturbances, so as to ensure a robust transient performance and high tracking precision. Due to the use of the standard projection mapping technique, adaptive parameters and nonlinear robust controller of two parts to be designed. In view of the uncertainty in the system model is non matching, using the backstepping method to design nonlinear robust controller. In addition, the controller can on-line identification of valve dead zone The parameters and dead time compensation algorithm, the portability is good. On this basis, the cross coupling theory and integrated direct / indirect adaptive robust control combined, proposes an adaptive robust method of dynamic gas cross coupling synchronous control strategy based on the realized precise position of double cylinder synchronous control.
This paper is divided into six chapters, and the contents of each chapter are described as follows:
The first chapter introduces the research status of pneumatic servo position control, points out that improving the tracking performance of the pneumatic technology is still an important direction in the research of the cylinder trajectory; introduces the research background and research status of pneumatic synchronization control; finally summarizes the significance of the research topic, research difficulties and main research contents.
The second chapter describes the pneumatic synchronization system hardware composition; the gas control valve through the valve port flow, friction characteristics on the thermal process and the cylinder cylinder two chamber gas, to establish the nonlinear model of pneumatic synchronization system, meter ready for the controller design; obtained by parameter identification. Control valve opening and the relationship between the control voltage and the heat conduction in the air cylinder and the inner wall of the cylinder between the rate; in order to meet the high precision pneumatic servo position control based on friction compensation model, established the LuGre dynamic friction model of the cylinder and the parameters are identified.
The third chapter to the dynamic nonlinear state space model of a shaft synchronization system and control system of air, difficulty, summed up the tracking trajectory to achieve high-precision cylinder control, the control methods must be taken into account in the model parameter uncertainty and uncertainty nonlinear. The first is to design a robust the adaptive controller and a robust controller of pneumatic position servo system, through the analysis of the two advantages and study how the organic combination of them, this paper presents a robust adaptive trajectory of a pneumatic position servo system. It adopts the adaptive tracking control strategy online parameter adjustment to reduce the uncertainty of model parameters, the robust control law inhibition of uncertain nonlinear effect, steady state so as to achieve good dynamic performance and high tracking accuracy. The experimental results show that the robust adaptive controller It is effective. The control performance is higher than the existing research results in the literature, and it has strong performance robustness for system parameters change and interference.
The fourth chapter, the adaptive robust controller based on the research in the last chapter, by introducing a fast adaptive dynamic compensation, the design of integrated direct / indirect adaptive robust controller, improve system transient tracking performance; the proportional directional control valve of the valve dead zone and significantly different dead zone with different characteristics, put forward direct / indirect adaptive robust controller is integrated with a dead time compensation, dead time on-line parameter identification of valve and through the construction of dead zone compensation for dead time, improves the portability; tracking control precision for the further improving of the cylinder during low-speed operation trajectory of cylinder friction compensation method based on LuGre model and how will the compensation method and integrated direct / indirect adaptive robust control methods together. Finally, through the experiment proved that the pneumatic The effectiveness of trajectory tracking control strategy of high precision servo system tracking. The amplitude of 0.125m, frequency of 0.5Hz sinusoidal trajectory, the maximum tracking error is 1.32mm, the average tracking error is 0.68mm, the transient maximum tracking error is 1.61mm; low speed tracking sinusoidal trajectory, the maximum tracking error is 0.59mm, the average the tracking error is 0.21mm.
The fifth chapter, this paper proposes an adaptive robust method of dynamic gas cross coupling synchronous control strategy based on multi cylinder ensures accurate synchronization and does not affect the control precision of each cylinder of the tracking system, the basic idea is: the synchronization error feedback to each axis of the input end of the controller and trajectory tracking error to form a new call for the coupling error of variables for each axis integrated direct / indirect adaptive robust controller so that the coupling error convergence design respectively, realize trajectory tracking error and synchronization error and convergence. The detailed design procedure of controller is given, and the double cylinder synchronization as an example, through effective and robust performance controller. Experiments show that the amplitude of tracking 0.125m, the frequency of sinusoidal trajectory 0.5Hz, maximum synchronization error is about 1.25mm, the average synchronization error is about 0.67mm.
In the sixth chapter, the main work of this paper, the research conclusions and the innovation points are summarized, and the future research work is prospected.

【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:TH138;TP273

【參考文獻】

相關(guān)期刊論文 前10條

1 薛陽,彭光正,范萌,伍清河;氣動位置伺服系統(tǒng)的帶α因子的非對稱模糊PID控制[J];北京理工大學(xué)學(xué)報;2003年01期

2 張百海,程海峰,馬延峰,彭光正;汽缸摩擦力特性實驗研究[J];北京理工大學(xué)學(xué)報;2005年06期

3 陳劍鋒;劉昊;陶國良;;基于LuGre摩擦模型的氣缸摩擦力特性實驗[J];蘭州理工大學(xué)學(xué)報;2010年03期

4 姜明,明亞莉,袁哲俊;氣動系統(tǒng)長氣管建模與分析[J];哈爾濱工業(yè)大學(xué)學(xué)報;1999年04期

5 高翔,李光華,何國輝;氣動伺服控制系統(tǒng)的自適應(yīng)模糊控制器的研究[J];海軍工程大學(xué)學(xué)報;2002年03期

6 施光林,史維祥,李天石;液壓同步閉環(huán)控制及其應(yīng)用[J];機床與液壓;1997年04期

7 武衛(wèi);吳強;王占林;;面向控制器設(shè)計的氣動位置系統(tǒng)的實用模型辨識[J];機床與液壓;2006年07期

8 朱春波,包鋼,聶伯勛,楊慶俊,王祖溫;用于氣動伺服系統(tǒng)的自適應(yīng)神經(jīng)模糊控制器[J];機械工程學(xué)報;2001年10期

9 王祖溫,楊慶俊;氣壓位置控制系統(tǒng)研究現(xiàn)狀及展望[J];機械工程學(xué)報;2003年12期

10 王祖溫,孟憲超,包鋼;基于QFT的開關(guān)閥控氣動位置伺服系統(tǒng)魯棒控制[J];機械工程學(xué)報;2004年07期

相關(guān)博士學(xué)位論文 前5條

1 孔祥臻;氣動比例系統(tǒng)的動態(tài)特性與控制研究[D];山東大學(xué);2007年

2 朱笑叢;氣動肌肉并聯(lián)關(guān)節(jié)高精度位姿控制研究[D];浙江大學(xué);2007年

3 劉延俊;氣動比例位置系統(tǒng)的控制方法及動態(tài)特性研究[D];山東大學(xué);2008年

4 路波;零重力環(huán)境模擬氣動懸掛系統(tǒng)的關(guān)鍵技術(shù)研究[D];浙江大學(xué);2009年

5 曹劍;基于運動和壓力獨立控制的氣動同步系統(tǒng)研究[D];浙江大學(xué);2009年

相關(guān)碩士學(xué)位論文 前1條

1 劉春元;滑?刂圃跉鈩游恢盟欧到y(tǒng)中的應(yīng)用[D];上海交通大學(xué);2008年

,

本文編號:1510833

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1510833.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶027a7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com