高速靜壓氣體軸承轉(zhuǎn)子系統(tǒng)的穩(wěn)定性分析
本文關(guān)鍵詞: 氣體軸承 動(dòng)態(tài)剛度系數(shù) 動(dòng)態(tài)阻尼系數(shù) 穩(wěn)定性 軸承轉(zhuǎn)子系統(tǒng) 出處:《哈爾濱工業(yè)大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:氣體軸承顯現(xiàn)出了很多傳統(tǒng)軸承所沒有的優(yōu)點(diǎn),如不需要潤滑系統(tǒng)、工作時(shí)無摩擦損耗、振動(dòng)小、工作壽命長、維護(hù)費(fèi)用低等。因此,氣體軸承已成功應(yīng)用于離心分離機(jī)、磨床、真空泵等設(shè)備,以提高工作轉(zhuǎn)速,降低能量損耗,提高位置精度。然而,高速氣體軸承也有其不足之處,如承載能力較低,同時(shí)由于潤滑介質(zhì)是空氣,穩(wěn)定性成為高速氣體軸承的主要問題。當(dāng)用氣體軸承支承的轉(zhuǎn)子達(dá)到足夠高的轉(zhuǎn)速時(shí),將會(huì)出現(xiàn)轉(zhuǎn)子失穩(wěn)現(xiàn)象,這種失穩(wěn)的出現(xiàn)是由于氣膜不再具有阻尼作用而導(dǎo)致,由此產(chǎn)生了自激振動(dòng),這種自激振動(dòng)阻礙了氣浮軸承的廣泛運(yùn)用。 為了解決以上問題,本文采取在機(jī)體與軸承之間嵌入O型橡膠圈的方法,使軸承柔性安裝,來提高系統(tǒng)穩(wěn)定性。因此,本文主要研究的是高速靜壓氣體軸承轉(zhuǎn)子系統(tǒng)的動(dòng)態(tài)穩(wěn)定性。 首先,采用線性攝動(dòng)法,在動(dòng)靜壓混合氣體軸承雷諾方程的基礎(chǔ)上,對(duì)相關(guān)變量作一階泰勒展開,推導(dǎo)出氣體軸承動(dòng)態(tài)剛度與動(dòng)態(tài)阻尼系數(shù)的計(jì)算公式,然后在數(shù)值計(jì)算中對(duì)線性偏微分方程組的求解采用中心差分法,逐次超松弛迭代法,數(shù)值積分采用Simpson復(fù)化積分法,同時(shí)分析偏心率、轉(zhuǎn)子自轉(zhuǎn)轉(zhuǎn)速、渦動(dòng)比、供氣壓力等對(duì)動(dòng)態(tài)特性系數(shù)的影響。 然后建立軸承轉(zhuǎn)子系統(tǒng)模型,帶入前面所求得的動(dòng)態(tài)特性系數(shù),建立系統(tǒng)的動(dòng)力學(xué)方程;同時(shí)采用Routh-Hurwitz穩(wěn)定性判別法,判斷系統(tǒng)穩(wěn)定性;并分析引入O型橡膠圈,對(duì)系統(tǒng)穩(wěn)定性的影響;分析供氣壓力、偏心率、渦動(dòng)比等對(duì)系統(tǒng)穩(wěn)定性的影響;同時(shí)采用New-mark逐步積分法,求解系統(tǒng)不平衡響應(yīng)。 最后是關(guān)于氣體軸承轉(zhuǎn)子系統(tǒng)實(shí)驗(yàn)臺(tái)的建立,實(shí)驗(yàn)以及對(duì)實(shí)驗(yàn)結(jié)果的分析,試驗(yàn)臺(tái)包括:夾持機(jī)構(gòu),電主軸,測試裝置;實(shí)驗(yàn)包括:升速測試,測得轉(zhuǎn)子的臨界轉(zhuǎn)速,以及不同轉(zhuǎn)速下轉(zhuǎn)子的不平衡響應(yīng)幅值。 由于轉(zhuǎn)子不平衡或外部激勵(lì)等原因?qū)е碌妮S承轉(zhuǎn)子系統(tǒng)的劇烈振動(dòng),,這種振動(dòng)嚴(yán)重影響了系統(tǒng)的工作性能且縮短了整個(gè)系統(tǒng)的使用壽命,因此有必要設(shè)計(jì)合適的軸承,使軸承轉(zhuǎn)子系統(tǒng)具有合理的剛度特性與阻尼特性,以此削弱這種振動(dòng)。
[Abstract]:Gas bearings show many advantages that traditional bearings do not have, such as no lubrication system, no friction loss, small vibration, long working life, low maintenance cost, etc. Therefore, gas bearings have been successfully used in centrifugal separators. Grinding machines, vacuum pumps and other equipment to increase the speed of work, reduce energy loss, improve the accuracy of the position. However, high-speed gas bearings also have their shortcomings, such as low bearing capacity, and because the lubricating medium is air, Stability becomes the main problem of high speed gas bearing. When the rotor supported by gas bearing reaches a sufficiently high speed, there will be instability of the rotor, which is caused by the fact that the film no longer has damping effect. As a result, self-excited vibration, which hinders the wide application of air-bearing. In order to solve the above problems, this paper adopts the method of inserting O-type rubber ring between the body and the bearing, so that the bearing can be installed flexibly to improve the stability of the system. In this paper, the dynamic stability of high-speed hydrostatic bearing rotor system is studied. Firstly, the linear perturbation method is used to calculate the dynamic stiffness and damping coefficient of the gas bearing, based on the Reynolds equation of the static and static pressure mixed gas bearing, and the first order Taylor expansion of the related variables is made. Then, the central difference method, successive overrelaxation iterative method and Simpson complex integral method are used to solve the linear partial differential equations. The eccentricity, rotor rotation speed and vorticity ratio are analyzed at the same time. The influence of gas supply pressure on dynamic characteristic coefficient. Then establish the bearing rotor system model, bring into the dynamic characteristic coefficient obtained in the front, establish the dynamic equation of the system; at the same time, use the Routh-Hurwitz stability discrimination method to judge the stability of the system, and analyze the introduction of O-type rubber ring, The influence of air supply pressure, eccentricity and vortex ratio on the stability of the system is analyzed. At the same time, the unbalance response of the system is solved by New-mark step by step integration method. Finally, it is about the establishment, the experiment and the analysis of the experimental results of the gas bearing rotor system. The test bench includes the clamping mechanism, the motorized spindle and the testing device, and the experiment includes: the test of raising speed, the measurement of the critical speed of the rotor, the measurement of the critical speed of the rotor, And the unbalance response amplitude of rotor at different speed. Because of the violent vibration of the bearing rotor system caused by the rotor imbalance or external excitation, this vibration seriously affects the working performance of the system and shortens the service life of the whole system, so it is necessary to design a suitable bearing. In order to weaken the vibration, the bearing rotor system has reasonable stiffness and damping characteristics.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH133.36
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 阮宏慧;張大衛(wèi);景秀并;;多孔質(zhì)徑向氣體靜壓軸承運(yùn)動(dòng)穩(wěn)定性分析[J];軸承;2006年09期
2 胡超,王立國,黃文虎,夏松波;轉(zhuǎn)子軸承系統(tǒng)渦動(dòng)的穩(wěn)定性分析[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2001年01期
3 康偉;張家忠;劉雁;任晟;;氣體動(dòng)壓軸承-轉(zhuǎn)子動(dòng)力系統(tǒng)穩(wěn)定性及分岔[J];航空動(dòng)力學(xué)報(bào);2007年09期
4 張廣輝;劉占生;;徑向氣體軸承-柔性轉(zhuǎn)子耦合系統(tǒng)動(dòng)力學(xué)研究[J];航空動(dòng)力學(xué)報(bào);2010年06期
5 尹佩琪;用“O”型膠圈支撐的空氣靜壓軸承穩(wěn)定性研究[J];航空學(xué)報(bào);1985年04期
6 張恩龍,李鍛能,馬平;氣體靜壓軸承技術(shù)及其在電主軸上的應(yīng)用[J];機(jī)床與液壓;2005年05期
7 戚社苗;耿海鵬;虞烈;;動(dòng)壓氣體軸承的動(dòng)態(tài)剛度和動(dòng)態(tài)阻尼系數(shù)[J];機(jī)械工程學(xué)報(bào);2007年05期
8 景崗,陳爾昌,陳日曜,師漢民,張鴻海;表面節(jié)流動(dòng)靜壓氣體潤滑軸承最近的研究狀況[J];潤滑與密封;1994年06期
9 李樹森,張鵬順,曲全利;氣體潤滑軸承技術(shù)的應(yīng)用及發(fā)展趨勢[J];潤滑與密封;1999年02期
10 侯 予,王 瑾,陳純正;徑向小孔靜壓氣體軸承的試驗(yàn)研究[J];潤滑與密封;2002年02期
本文編號(hào):1505612
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1505612.html