基于ANSYS與FLUENT軟件的液粘調(diào)速離合器傳動(dòng)軸結(jié)構(gòu)設(shè)計(jì)分析
本文關(guān)鍵詞: HVD 傳動(dòng)軸 有限元分析 ANSYS 有限體積法 FLUENT 數(shù)值模擬 出處:《山東科技大學(xué)》2011年碩士論文 論文類型:學(xué)位論文
【摘要】:液體粘性傳動(dòng)裝置(Hydro Viscous Drive,簡稱HVD)是集機(jī)電液一體化技術(shù)的可控軟起動(dòng)裝置,是低速重載設(shè)備實(shí)現(xiàn)無級(jí)調(diào)速的理想設(shè)備。近年來,在礦業(yè)裝備、港口機(jī)械、物料輸送、流體機(jī)械等重型、大功率設(shè)備上得到廣泛應(yīng)用,取得了顯著的節(jié)能效果。液粘調(diào)速離合器輸入軸和輸出軸用于承擔(dān)傳遞扭矩,作為潤滑油與控制油輸送載體,其軸向與徑向均設(shè)計(jì)有油孔,結(jié)構(gòu)較為復(fù)雜。由于應(yīng)力應(yīng)變多產(chǎn)生在受力較為集中的薄弱截面,容易導(dǎo)致機(jī)械零件疲勞破壞;另一方面,密封溝槽的應(yīng)力應(yīng)變同樣較為集中,因此輸入輸出軸的結(jié)構(gòu)及其工藝設(shè)計(jì)優(yōu)劣對(duì)該軸的機(jī)械動(dòng)力學(xué)、密封性能具有重要的影響。 隨著計(jì)算機(jī)技術(shù)的快速發(fā)展,現(xiàn)代機(jī)械設(shè)計(jì)理論也得到廣泛的應(yīng)用;谟邢拊碚搶(duì)重要零件關(guān)鍵部位的計(jì)算機(jī)輔助計(jì)算與性能分析,近年來越來越受到科技界的重視,已經(jīng)逐漸發(fā)展成現(xiàn)代設(shè)計(jì)方法的一種趨勢。液體粘性調(diào)速裝置的輸入軸和輸出軸承受載荷狀況復(fù)雜,機(jī)械動(dòng)力與密封性能要求高,用有限元法對(duì)傳動(dòng)軸進(jìn)行綜合分析,與傳統(tǒng)力學(xué)分析方法相比,能夠從微觀上更加全面準(zhǔn)確把握軸的實(shí)際受力情況,對(duì)提高裝置的綜合性能,具有一定的學(xué)術(shù)價(jià)值與工程實(shí)踐指導(dǎo)意義。 本文以250-1500型液粘調(diào)速離合器為研究對(duì)象,在傳統(tǒng)理論力學(xué)的基礎(chǔ)上,建立輸入軸與輸出軸的力學(xué)模型,對(duì)其關(guān)鍵部分進(jìn)行彎矩和扭矩的強(qiáng)度校核,然后通過ANSYS軟件對(duì)軸進(jìn)行分析,進(jìn)一步論證了二者的最大彎矩、扭矩以及危險(xiǎn)截面。 選用三維造型軟件Pro/E建立傳動(dòng)軸的實(shí)體模型,通過與ANSYS軟件的數(shù)據(jù)接口連接導(dǎo)入后將實(shí)體模型轉(zhuǎn)換為有限元模型,選定模型的單元類型、材料屬性,然后對(duì)模型進(jìn)行網(wǎng)格劃分,定義邊界條件后進(jìn)行求解。通過對(duì)軟件得出的計(jì)算結(jié)果進(jìn)行分析,對(duì)輸入、輸出軸上的應(yīng)力及應(yīng)變以及兩軸上的危險(xiǎn)剖面及其危險(xiǎn)點(diǎn)有更加完整、更加詳細(xì)、更加準(zhǔn)確的把握,為進(jìn)一步對(duì)輸出軸密封性進(jìn)行數(shù)值模擬奠定基礎(chǔ)。 基于有限體積法,用FLUENT軟件對(duì)輸出軸上的密封薄弱環(huán)節(jié)進(jìn)行了數(shù)值模擬和流體動(dòng)力學(xué)分析,得到了速度場、壓力場、密度場以及出口流量的分布規(guī)律,并對(duì)可能引起泄漏量的參數(shù)進(jìn)行了分析,重點(diǎn)分析了控制壓力、密封間隙、密封腔深度等結(jié)構(gòu)幾何參數(shù)變化可能對(duì)泄漏量與密封性能產(chǎn)生的影響,為輸出軸密封性能的優(yōu)化提供一定的理論指導(dǎo)依據(jù)。 本文以液體粘性調(diào)速離合器輸入軸、輸出軸為對(duì)象,進(jìn)行了傳統(tǒng)力學(xué)強(qiáng)度校核與關(guān)鍵截面分析。首次全面運(yùn)用傳統(tǒng)力學(xué)、有限元法和有限體積法分析理論對(duì)輸入軸和輸出軸進(jìn)行總體結(jié)構(gòu)強(qiáng)度、密封性能方面的研究,獲得諸多應(yīng)力、應(yīng)變、危險(xiǎn)截面以及密封流場的相關(guān)變化規(guī)律。為更加合理設(shè)計(jì)兩軸機(jī)械結(jié)構(gòu)、合理科學(xué)制定制造工藝奠定了理論指導(dǎo)依據(jù)。
[Abstract]:Hydro Viscous driver is a controllable soft starting device with electromechanical and hydraulic integration technology. It is an ideal equipment for realizing stepless speed regulation with low speed and heavy load equipment. In recent years, in mining equipment, port machinery, material transportation, Fluid machinery and other heavy-duty, high-power equipment have been widely used, and achieved remarkable energy-saving effect. The input shaft and output shaft of the liquid-viscosity speed regulating clutch are used to carry the transmission torque, which is used as the carrier of lubricating oil and control oil transportation. Oil holes are designed in both axial and radial directions, and the structure is more complicated. Because the stress and strain are mostly produced in the weak section where the stress is concentrated, it is easy to cause fatigue failure of mechanical parts. On the other hand, the stress and strain of the sealing groove are also concentrated. Therefore, the structure of the input-output shaft and its technological design have an important influence on the mechanical dynamics and sealing performance of the shaft. With the rapid development of computer technology, modern mechanical design theory has been widely used. In recent years, computer aided calculation and performance analysis of key parts based on finite element theory have been paid more and more attention by scientific and technological circles. It has gradually developed into a trend of modern design method. The input shaft and output shaft of the liquid viscous speed regulating device are subjected to complex load conditions, and the mechanical power and sealing performance are high. The finite element method is used to analyze the drive shaft synthetically. Compared with the traditional mechanical analysis method, it can grasp the actual force situation of the shaft more comprehensively and accurately from the microscopic point of view, and has certain academic value and engineering practice guiding significance to improve the comprehensive performance of the device. Taking the 250-1500 liquid-viscosity speed regulating clutch as the research object, the mechanical model of the input shaft and the output shaft is established on the basis of the traditional theoretical mechanics, and the strength of the key parts of the clutch is checked with the bending moment and torque. Then, the maximum bending moment, torque and dangerous cross section of the two shafts are analyzed by ANSYS software. The solid model of the drive shaft is established by using the 3D modeling software Pro/E. The entity model is transformed into the finite element model after being imported through the data interface of the ANSYS software. The element type and material properties of the model are selected. Then the model is meshed, the boundary conditions are defined and solved. By analyzing the calculation results obtained by the software, the stress and strain on the input and output axes and the dangerous sections on the two axes and their dangerous points are more complete. A more detailed and accurate grasp of the output shaft seal for further numerical simulation laid the foundation. Based on the finite volume method, a numerical simulation and hydrodynamic analysis of the sealing weakness on the output shaft is carried out by using FLUENT software. The distribution of velocity field, pressure field, density field and outlet flow rate are obtained. The parameters that may cause leakage are analyzed, and the influence of structural geometric parameters, such as control pressure, seal clearance and seal cavity depth, on leakage and seal performance is analyzed. It provides a theoretical basis for the optimization of the seal performance of the output shaft. In this paper, the input shaft and output shaft of the fluid viscous speed regulating clutch are taken as the objects, the traditional mechanical strength checking and the key section analysis are carried out, and the traditional mechanics is used comprehensively for the first time. Finite element method (FEM) and finite volume method (FEM) are used to study the overall structural strength and sealing performance of the input shaft and the output shaft, and a great deal of stress and strain are obtained. The change law of dangerous section and sealing flow field lays a theoretical basis for more rational design of two-axis mechanical structure and rational and scientific formulation of manufacturing technology.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH133.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃旭東,,費(fèi)仁元,楊家華;主軸部件動(dòng)態(tài)特性的實(shí)驗(yàn)研究[J];北京工業(yè)大學(xué)學(xué)報(bào);1994年03期
2 魏鋼城;曹建國;張杰;戴江波;;熱軋帶鋼R2粗軋機(jī)下主傳動(dòng)軸斷裂有限元分析與應(yīng)用[J];北京科技大學(xué)學(xué)報(bào);2007年05期
3 魏宸官;一種新型的可控?zé)o級(jí)調(diào)速傳動(dòng)裝置——液體粘性傳動(dòng)或油膜剪切離合器[J];北京工業(yè)學(xué)院學(xué)報(bào);1985年03期
4 花家壽 ,何維廉 ,黃宏成 ,黃劉琦 ,王志敏 ,楊征;液粘調(diào)速器的結(jié)構(gòu)和理論分析[J];傳動(dòng)技術(shù);2002年02期
5 周斌;王禮平;;YOT型調(diào)速液力偶合器和YT型液粘調(diào)速器工作原理及其在電廠的應(yīng)用[J];華北電力技術(shù);2009年09期
6 張紅軍,錢軍;YT型液粘調(diào)速離合器在鍋爐風(fēng)機(jī)上的應(yīng)用[J];華東電力;2002年08期
7 胡恩球,張新訪,向文,周濟(jì);有限元網(wǎng)格生成方法發(fā)展綜述[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);1997年04期
8 史安娜,李康舉,孫斌;主軸部件靜動(dòng)態(tài)特性分析[J];機(jī)械設(shè)計(jì)與制造;1999年05期
9 鄭志強(qiáng),南玲玲;液體粘性調(diào)速離合器及其特性參數(shù)設(shè)計(jì)[J];開封大學(xué)學(xué)報(bào);1999年02期
10 樊杰;趙軼;徐清浩;;有限元法的一般思想[J];科技情報(bào)開發(fā)與經(jīng)濟(jì);2008年03期
相關(guān)博士學(xué)位論文 前1條
1 陳寧;液體粘性傳動(dòng)(HVD)技術(shù)的研究[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前4條
1 姜?jiǎng)τ?液體粘性調(diào)速離合器試驗(yàn)系統(tǒng)的研制[D];浙江大學(xué);2006年
2 侯煜;基于CFD環(huán)形間隙泄漏量及摩擦力的仿真計(jì)算[D];太原理工大學(xué);2007年
3 李鳳芹;螺旋槽干氣密封端面流場的數(shù)值模擬及參數(shù)研究[D];西華大學(xué);2008年
4 富影杰;基于CFD的螺旋槽干氣密封微間隙流場及密封性能研究[D];蘭州理工大學(xué);2010年
本文編號(hào):1501189
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1501189.html