面齒輪時(shí)變嚙合剛度計(jì)算及動(dòng)態(tài)嚙合性能研究
本文關(guān)鍵詞: 面齒輪 二次開發(fā) 嚙合剛度 動(dòng)態(tài)嚙合 有限元分析 出處:《中南大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:精確的面齒輪時(shí)變嚙合剛度是面齒輪傳動(dòng)動(dòng)力學(xué)研究的基礎(chǔ),而面齒輪的動(dòng)態(tài)嚙合性能對(duì)整機(jī)的工作性能有重要影響,因此研究面齒輪的嚙合剛度及動(dòng)態(tài)嚙合性能是面齒輪傳動(dòng)設(shè)計(jì)與分析工作中的重要內(nèi)容。論文研究了基于VB的Catia軟件二次開發(fā)技術(shù)及面齒輪幾何建模方法,開發(fā)得到一個(gè)面齒輪三維幾何建模軟件,提出一種新的面齒輪時(shí)變嚙合剛度計(jì)算方法,研究了面齒輪動(dòng)態(tài)嚙合性能,為面齒輪的設(shè)計(jì)與應(yīng)用提供參考。 論文主要研究?jī)?nèi)容如下: 1.基于面齒輪加工原理得到面齒輪理論齒面離散點(diǎn)坐標(biāo)。以Nurbs曲面理論為基礎(chǔ),開發(fā)得到基于Catia軟件和VisualBasic語(yǔ)言的面齒輪幾何建模軟件。 2.基于齒輪動(dòng)力學(xué)基本理論,提出一種通用的齒輪傳動(dòng)時(shí)變嚙合剛度計(jì)算方法。以直齒圓柱齒輪為例,對(duì)比分析論文所提方法與IS06336方法得到的齒輪副時(shí)變嚙合剛度曲線,驗(yàn)證了論文所提方法的正確性。 3.應(yīng)用論文所提方法得到面齒輪時(shí)變嚙合剛度曲線,研究發(fā)現(xiàn)由于載荷分布不均導(dǎo)致該對(duì)面齒輪副嚙合剛度最小值出現(xiàn)在三齒嚙合區(qū)內(nèi)前后兩對(duì)輪齒受載相同的位置。 4.研究了載荷及面齒輪輪轂厚度對(duì)面齒輪嚙合剛度的影響規(guī)律,結(jié)果表明載荷及面齒輪輪轂厚度對(duì)面齒輪嚙合剛度的平均值及波動(dòng)幅值均有重要影響。當(dāng)面齒輪輪轂較薄,而負(fù)載較大時(shí)可能出現(xiàn)嚴(yán)重的偏載現(xiàn)象。 5.建立了合理的面齒輪動(dòng)態(tài)嚙合性能有限元分析模型,研究轉(zhuǎn)速及負(fù)載對(duì)面齒輪傳動(dòng)動(dòng)態(tài)嚙合性能的影響規(guī)律,結(jié)果表明:轉(zhuǎn)速越大,動(dòng)載系數(shù)越大,嚙合接觸沖擊越明顯,持續(xù)時(shí)間越長(zhǎng),為高質(zhì)量面齒輪傳動(dòng)的設(shè)計(jì)提供了有效的分析方法。 6.采用滾檢試驗(yàn)方式檢查面齒輪的接觸軌跡和區(qū)域,并與有限元分析計(jì)算得到的接觸軌跡及區(qū)域進(jìn)行對(duì)比驗(yàn)證,試驗(yàn)結(jié)果一致。圖74副,表9個(gè),參考文獻(xiàn)72篇。
[Abstract]:Accurate time-varying meshing stiffness of face gear is the basis of dynamic research of plane gear transmission, and the dynamic meshing performance of face gear has an important effect on the working performance of the whole machine. Therefore, the research on the meshing stiffness and dynamic meshing performance of face gear is an important part in the design and analysis of face gear transmission. This paper studies the secondary development technology of Catia software based on VB and the geometric modeling method of surface gear. A 3D geometric modeling software for surface gear is developed, and a new method for calculating the time-varying meshing stiffness of surface gear is proposed. The dynamic meshing performance of surface gear is studied, which provides a reference for the design and application of surface gear. The main contents of this thesis are as follows:. 1. Based on the machining principle of surface gear, the discrete point coordinates of tooth surface of surface gear are obtained. Based on the theory of Nurbs surface, the geometric modeling software of surface gear based on Catia and VisualBasic language is developed. 2. Based on the basic theory of gear dynamics, a general method for calculating the time-varying meshing stiffness of gear transmission is proposed. Taking spur cylindrical gear as an example, the time-varying meshing stiffness curve of gear pair obtained by the method proposed in this paper is compared with that obtained by IS06336 method. The correctness of the proposed method is verified. 3. Using the method proposed in this paper, the time-varying meshing stiffness curve of the face gear is obtained. It is found that the minimum meshing stiffness of the opposite gear pair appears in the same position before and after the two pairs of gear teeth are loaded in the three-tooth meshing region due to the uneven load distribution. 4. The influence of load and face gear hub thickness on meshing stiffness of opposite gear is studied. The results show that the mean value and fluctuation amplitude of meshing stiffness of face gear hub thickness are important. However, when the load is large, serious biasing may occur. 5. A reasonable finite element analysis model of dynamic meshing performance of surface gear is established, and the influence of rotational speed and load on dynamic meshing performance of face gear transmission is studied. The results show that the higher the rotational speed, the greater the dynamic load coefficient, the more obvious the meshing contact impact is. The longer the duration is, the more effective analysis method is provided for the design of high quality face gear transmission. 6. The contact track and area of surface gear are checked by rolling test method, and compared with the contact track and area calculated by finite element analysis, the results are in agreement with those obtained by finite element analysis. The results are in agreement with each other: 74 pairs of figs, 9 tables, 72 refs.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊振;王三民;劉海霞;范葉森;;負(fù)載與支承剛度對(duì)面齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)特性的影響分析[J];燕山大學(xué)學(xué)報(bào);2010年04期
2 楊振;王三民;范葉森;劉海霞;;面齒輪傳動(dòng)系統(tǒng)參數(shù)激勵(lì)振動(dòng)特性分析[J];重慶大學(xué)學(xué)報(bào);2011年01期
3 郭輝;趙寧;方宗德;沈云波;;基于接觸有限元的面齒輪傳動(dòng)彎曲強(qiáng)度研究[J];航空動(dòng)力學(xué)報(bào);2008年08期
4 陳廣艷;陳國(guó)定;李永祥;趙寧;;含有面齒輪的傳動(dòng)系統(tǒng)動(dòng)態(tài)響應(yīng)特性研究[J];航空動(dòng)力學(xué)報(bào);2009年10期
5 卜忠紅;劉更;吳立言;;斜齒輪嚙合剛度變化規(guī)律研究[J];航空動(dòng)力學(xué)報(bào);2010年04期
6 李政民卿;朱如鵬;;裝配偏置誤差對(duì)正交面齒輪傳動(dòng)接觸特性的影響[J];航空學(xué)報(bào);2009年07期
7 王濤,唐增寶,鐘毅芳;齒輪傳動(dòng)的動(dòng)態(tài)嚙合剛度[J];華中理工大學(xué)學(xué)報(bào);1992年03期
8 趙寧;曾曉春;郭輝;方宗德;;求解面齒輪嚙合軌跡的新方法[J];計(jì)算機(jī)仿真;2009年01期
9 卜忠紅;劉更;吳立言;劉增民;;基于線性規(guī)劃法的齒輪嚙合剛度與載荷分布計(jì)算的改進(jìn)方法[J];機(jī)械科學(xué)與技術(shù);2008年11期
10 靳廣虎;朱如鵬;朱自冰;鮑和云;;正交面齒輪傳動(dòng)系統(tǒng)的耦合振動(dòng)分析[J];機(jī)械科學(xué)與技術(shù);2009年01期
,本文編號(hào):1493811
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1493811.html