基于電磁激勵(lì)的滑動(dòng)軸承軸心軌跡主動(dòng)控制研究
發(fā)布時(shí)間:2018-01-25 12:02
本文關(guān)鍵詞: 滑動(dòng)軸承 軸心軌跡控制 混合靈敏度 回路成形 半實(shí)物仿真 出處:《山東大學(xué)》2011年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:非圓異形截面結(jié)構(gòu)能夠顯著提高零件的性能和使用壽命,但由于非圓異形截面結(jié)構(gòu)的特殊性,給此類(lèi)零件的加工提出了難題。本文以基于電磁激勵(lì)的滑動(dòng)軸承系統(tǒng)的主軸運(yùn)動(dòng)軌跡控制為出發(fā)點(diǎn),研究了轉(zhuǎn)子運(yùn)動(dòng)軌跡的主動(dòng)控制技術(shù),以期為非圓異形截面零件的加工提供一種新方法。綜合分析了傳統(tǒng)的以及最新發(fā)展的各種加工非圓異形截面零件的方法以及伺服驅(qū)動(dòng)裝置,提出了基于電磁激勵(lì)控制的滑動(dòng)軸承中心軌跡的方法,來(lái)實(shí)現(xiàn)主軸按照預(yù)定非圓軌跡運(yùn)動(dòng)。實(shí)現(xiàn)思路是油膜力作為主要支撐力,電磁力作為控制力,通過(guò)伺服控制技術(shù)實(shí)時(shí)控制勵(lì)磁電流,從而控制電磁鐵與轉(zhuǎn)子之間的作用力,從而達(dá)到控制轉(zhuǎn)子運(yùn)動(dòng)軌跡的目的。 對(duì)軸承系統(tǒng)進(jìn)行了理論研究,建立了滑動(dòng)軸承傾轉(zhuǎn)主軸的運(yùn)動(dòng)模型和動(dòng)力學(xué)模型,推導(dǎo)了主軸發(fā)生傾轉(zhuǎn)時(shí)的油膜壓力分布Reynolds方程,推導(dǎo)了油膜厚度方程。用差分法對(duì)油膜壓力分布進(jìn)行了計(jì)算,用辛普森積分法對(duì)油膜力矩進(jìn)行了求解。推導(dǎo)了電磁力矩的表達(dá)式,用運(yùn)動(dòng)學(xué)方法對(duì)轉(zhuǎn)子軸心軌跡進(jìn)行了計(jì)算;谳S承的局部線(xiàn)性化的模型建立了擾動(dòng)壓力Reynolds方程,對(duì)軸承系統(tǒng)八個(gè)特性系數(shù)進(jìn)行了理論分析計(jì)算。研究了轉(zhuǎn)速和勵(lì)磁電流對(duì)特性系數(shù)的影響,建立了被控對(duì)象的無(wú)量綱動(dòng)力學(xué)模型,對(duì)控制方案進(jìn)行了分析。 研究了滑動(dòng)軸承系統(tǒng)基于魯棒Hoo的控制方法,被控對(duì)象可觀可控,可以通過(guò)狀態(tài)反饋實(shí)現(xiàn)輸入輸出解耦。基于全局尋優(yōu)的遺傳算法設(shè)計(jì)魯棒H∞混合靈敏度控制器,該控制器實(shí)現(xiàn)被控對(duì)象輸出對(duì)參考信號(hào)的良好跟蹤,并對(duì)外界擾動(dòng)有一定的抑制作用,但由于解耦矩陣對(duì)模型攝動(dòng)比較敏感,僅能容許模型小幅攝動(dòng);隰敯鬑∞回路成形方法直接對(duì)耦合系統(tǒng)設(shè)計(jì)控制器,實(shí)現(xiàn)輸入輸出解耦,對(duì)控制器進(jìn)行降階處理,該控制器對(duì)模型攝動(dòng)和外界擾動(dòng)均有較好的抑制作用,滿(mǎn)足魯棒性能和魯棒穩(wěn)定性要求。 對(duì)滑動(dòng)軸承轉(zhuǎn)子軌跡控制實(shí)驗(yàn)進(jìn)行了設(shè)計(jì),提出基于xPC Target的硬件在回路的控制仿真實(shí)驗(yàn)方法。搭建了xPC Target仿真平臺(tái),對(duì)xPC Target平臺(tái)進(jìn)行了通信和信號(hào)輸入輸出測(cè)試,對(duì)電容式位移傳感器進(jìn)行了標(biāo)定,由于時(shí)間和實(shí)驗(yàn)條件有限,未完成硬件在回路仿真實(shí)驗(yàn)。
[Abstract]:Non-circular special-section structure can significantly improve the performance and service life of the parts, but due to the particularity of non-circular special-shaped cross-section structure. In this paper, the active control technology of rotor motion trajectory is studied based on the spindle motion trajectory control of the sliding bearing system based on electromagnetic excitation. In order to provide a new method for the machining of non-circular special-section parts, this paper synthetically analyzes the traditional and newly developed methods of machining non-circular special-section parts and the servo drive device. A method based on electromagnetic excitation control is proposed to realize the spindle moving according to the predetermined non-circular trajectory. The realization idea is that the oil film force is the main supporting force and the electromagnetic force is the control force. The excitation current is real-time controlled by servo control technology to control the force between the electromagnet and the rotor, so as to control the track of the rotor motion. This paper studies the bearing system theoretically, establishes the motion model and dynamic model of sliding bearing tilting spindle, and deduces the Reynolds equation of oil film pressure distribution when the spindle tilts. The oil film thickness equation is derived, the oil film pressure distribution is calculated by difference method, the oil film torque is solved by Simpson integral method, and the expression of electromagnetic torque is derived. The rotor axis trajectory is calculated by kinematics method, and the Reynolds equation of disturbance pressure is established based on the local linearization model of the bearing. Eight characteristic coefficients of bearing system are theoretically analyzed and calculated. The effects of rotational speed and excitation current on the characteristic coefficients are studied. The dimensionless dynamic model of the controlled object is established and the control scheme is analyzed. The control method of sliding bearing system based on robust Hoo is studied. The controlled object is observable and controllable. The robust H 鈭,
本文編號(hào):1462795
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1462795.html
最近更新
教材專(zhuān)著