精密組件的平行度檢測與修整技術(shù)研究
本文關(guān)鍵詞:精密組件的平行度檢測與修整技術(shù)研究 出處:《大連理工大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 平行度測量 精密修整 定位面擬合
【摘要】:精密機(jī)電產(chǎn)品通常包含多個機(jī)械零件,為了實(shí)現(xiàn)產(chǎn)品的批量生產(chǎn),并降低工人的勞動強(qiáng)度,各國相繼開發(fā)出半自動、自動的裝配系統(tǒng)。在零件加工精度和裝配系統(tǒng)裝配精度的綜合影響下,裝配完成后組件的位置精度可能達(dá)不到預(yù)期要求。精密修整作為提高零件或組件形狀精度和位置精度的技術(shù)手段越來越受到人們重視,在精密器件制造中有著廣泛的應(yīng)用。 本文圍繞某一精密組件兩個平面的平行度誤差展開研究。分析發(fā)現(xiàn),組件有平行度要求的兩面之一是一內(nèi)凹平面,該平面不能進(jìn)行再加工,同時無法直接作為后續(xù)加工的定位支撐面,在對兩種平行度修整方案和修整方式詳細(xì)比較的基礎(chǔ)上,基于簡單化和實(shí)用化考慮,最終選用基于定位面擬合和精密銑削去除的平行度修整法。 搭建測量加工裝置,為實(shí)現(xiàn)組件的可靠裝夾以及精確去除,考慮到空間限制、修整效率和結(jié)構(gòu)簡單等實(shí)際作業(yè)因素,設(shè)計了集成調(diào)整和定位的專用修整夾具,由定位模塊、鎖緊機(jī)構(gòu)、微調(diào)模塊、中間連接板和底座五部分組成,在實(shí)現(xiàn)組件可靠定位的同時可將三個小安裝面調(diào)出理想高度差。修整過程包括平行度測量、去除量求解、被加工面精密調(diào)整和精密加工四個步驟。測量組件上的四個點(diǎn),利用最小二乘法擬合出平面;測量被加工件上的三個小安裝面并獲得其到擬合平面的距離,計算后分別獲得三個小安裝面的去除量。利用夾具上的微調(diào)模塊對被加工件進(jìn)行調(diào)整,最后進(jìn)行精密銑削加工。 為提高平行度修整精度,同時避免組件受力過大受損,采用有限元分析方法對被修整組件在所搭建實(shí)驗(yàn)設(shè)備上的鎖緊和變形進(jìn)行了研究。為簡化修整過程,將組件修整過程中的計算采用VC++編程實(shí)現(xiàn)。分析被加工材料的特性,合理選擇加工刀具,對平行度超差的組件進(jìn)行修整實(shí)驗(yàn),修整后組件兩面的平行度誤差滿足要求,驗(yàn)證了定位面擬合的平行度修整方案的可行性。最后,分析實(shí)驗(yàn)過程中可能存在的誤差,尋求誤差減小方法,以提高修整精度。
[Abstract]:Precision electromechanical products usually contain many mechanical parts. In order to realize the batch production of products and reduce the labor intensity of workers, many countries have developed semi-automatic. Automatic assembly system. Under the influence of machining accuracy of parts and assembly accuracy of assembly system. The position accuracy of assembly after assembly may not reach the expected requirements. Precision dressing as a technical means to improve the shape accuracy and position accuracy of parts or components has been paid more and more attention. It is widely used in precision device manufacturing. In this paper, the parallelism error of two planes of a precise component is studied. It is found that one of the two sides of the assembly with parallelism requirement is an inner concave plane, which can not be reprocessed. At the same time, it can not be directly used as the positioning support surface for subsequent processing. On the basis of comparing the two parallel dressing schemes and dressing methods in detail, it is based on the consideration of simplification and practicality. Finally, the parallelism dressing method based on positioning surface fitting and precision milling removal is selected. In order to realize the reliable clamping and accurate removal of the assembly, considering the practical operation factors such as space limitation, trimming efficiency and simple structure, a special dressing fixture for integrated adjustment and positioning was designed. It consists of five parts: positioning module, locking mechanism, fine-tuning module, intermediate connection plate and base. The three small mounting surfaces can be adjusted out of the ideal height difference while the components are reliably positioned. The trimming process includes parallelism measurement. The removal amount is solved, the precision adjustment of the machined surface and the four steps of precision machining are carried out. The four points on the measuring module are fitted out by the least square method. The three small mounting surfaces on the added workpiece are measured and the distance from the three small mounting surfaces to the fitting plane is obtained. The removal amount of the three small mounting surfaces is obtained respectively after calculation. The workpiece is adjusted by the fine-tuning module of the fixture. Finally, precision milling is carried out. In order to improve the accuracy of parallelism and avoid too much damage to the components, the locking and deformation of the trimmed components on the experimental equipment were studied by using the finite element analysis method in order to simplify the dressing process. The calculation of the component dressing process is realized by VC programming. The characteristics of the processed materials are analyzed, the cutting tools are reasonably selected, and the experiments are carried out on the components whose parallelism is too low. The parallelism error of the two sides of the component after dressing meets the requirements, which verifies the feasibility of the parallelism dressing scheme for the fitting of the positioning surface. Finally, the possible errors in the experiment process are analyzed, and the error reduction method is found. To improve the precision of dressing.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH161
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓同鵬;李國平;沈杰;;基于壓電陶瓷微位移執(zhí)行器的精密定位技術(shù)研究[J];傳感器與微系統(tǒng);2010年02期
2 安曉剛 ,宋清;電化學(xué)機(jī)械光整加工技術(shù)的研究[J];電加工與模具;2002年04期
3 周景亮;林志熙;;面對面的平行度誤差數(shù)據(jù)處理[J];工具技術(shù);2010年06期
4 王清明,盧澤生,梁迎春,董申;壓電陶瓷微動機(jī)構(gòu)在超精密車削中的應(yīng)用[J];工具技術(shù);1999年05期
5 孫建春;盛光敏;陳登明;周安若;朱光俊;;H_2氣氛保護(hù)熱處理1J50組織結(jié)構(gòu)與性能的研究[J];功能材料;2010年03期
6 李圣怡,黃長征,王貴林;微位移機(jī)構(gòu)研究[J];航空精密制造技術(shù);2000年04期
7 周憶,米林,廖強(qiáng),梁德沛;基于超聲研磨的超精密加工[J];航空精密制造技術(shù);2003年01期
8 郭厚q;游全根;曹愛文;;基于切削力的銑削加工誤差數(shù)學(xué)模型[J];機(jī)床與液壓;2007年12期
9 張磊;劉瑩;;基于柔性鉸鏈的微位移機(jī)構(gòu)設(shè)計[J];機(jī)床與液壓;2010年05期
10 榮烈潤;;現(xiàn)代特種加工技術(shù)的進(jìn)展[J];機(jī)電一體化;2007年04期
相關(guān)博士學(xué)位論文 前1條
1 朱錚濤;基于計算機(jī)視覺圖像精密測量的關(guān)鍵技術(shù)研究[D];華南理工大學(xué);2004年
相關(guān)碩士學(xué)位論文 前4條
1 徐寧;電化學(xué)機(jī)械復(fù)合光整加工及表面特性研究[D];中國農(nóng)業(yè)大學(xué);2002年
2 董海云;小錐度激光打孔技術(shù)及工藝研究[D];長春理工大學(xué);2004年
3 王成群;基于機(jī)器視覺的音膜同心度測量系統(tǒng)的研究與設(shè)計[D];廣東工業(yè)大學(xué);2008年
4 趙軍英;高壓磨料水射流光整加工技術(shù)的理論分析與數(shù)值模擬研究[D];太原理工大學(xué);2008年
,本文編號:1438484
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1438484.html