潤滑劑粘度及齒輪轉速對輪齒接觸應力的綜合影響
發(fā)布時間:2018-01-05 16:02
本文關鍵詞:潤滑劑粘度及齒輪轉速對輪齒接觸應力的綜合影響 出處:《太原理工大學》2013年碩士論文 論文類型:學位論文
更多相關文章: 重載齒輪傳動 潤滑劑粘度 齒輪速度 綜合效應 接觸應力
【摘要】:現行齒輪傳動接觸疲勞強度的設計基礎是Hertz理論,而Hertz理論僅僅適用一對光滑表面之間的靜態(tài)干接觸,這與齒輪傳動的實際工況有較大差異,因為齒輪傳動大多在潤滑狀態(tài)下運轉。為了彌補這一差異,漸開線圓柱齒輪承載能力計算的國際標準(ISO/6336:1996)以及相應的國家標準(GB3840-1997)中分別推薦了潤滑系數和速度系數,一些學者也分別探討了潤滑劑粘度和齒輪轉速對齒輪傳動接觸應力的影響。然而,不難理解,潤滑劑粘度數值的選擇與齒輪轉速無不相關。因此,有必要從理論上探討二者對齒輪傳動接觸疲勞應力的綜合影響。 本文首先建立了漸開線圓柱齒輪傳動的潤滑模型;然后,基于熱彈流潤滑理論,采用多重網格法、多重網格積分法、逐列掃描法分別求解齒面壓力分布、油膜厚度分布和溫度分布;在此基礎上應用彈性接觸理論求解輪齒接觸區(qū)次表面應力分布;最后,主要針對中、重載尤其是重載齒輪傳動,分別從潤滑劑粘度η0和齒面綜合速度u之乘積η0U固定、定粘度變綜合速度、定綜合速度變粘度、粘度與綜合速度均單調增大四種方式,共進行了588組數值計算?偨Y數值計算可得如下主要結論: 1.在潤滑劑粘度和齒面綜合速度之乘積η0U固定不變時,同時改變其中任一量,對齒輪傳動接觸疲勞應力不會產生影響。 2.當Hertz接觸應力pH≥1.0GPa時,無論潤滑劑粘度如何變化,輪齒接觸區(qū)次表面主剪應力最大值τmax均小于Hertz接觸的相應值;尤其當PH≥1.3GPa時,τmax隨著η0U的增大單調減小,這也從理論上揭示了潤滑對降低輪齒接觸應力的有利作用。有必要特別指出的是,對于Hertz接觸應力pH1.3GPa的載荷工況,當齒輪轉速固定時,τmax與潤滑劑粘度η0之間呈拋物線關系,即當粘度大于一定值后,輪齒接觸應力隨著粘度的增大不降反增,這一理論結果已被前人的試驗結論驗證。然而,如上所述的國際標準(ISO/6336:1996)以及相應的國家標準(GB3840-1997)中所給出的潤滑系數均隨潤滑劑粘度的增大單調增大。因此,有理由認為,該潤滑系數一般只適用于重載齒輪傳動。 3.主剪應力的最大值τmax的X坐標值隨著η0U的增大逐漸向出口區(qū)移動;而ττmax的Z坐標位置不隨乘積η0u的增大而改變,基本恒定在0.8處。 4.第二壓力峰Pmax之值隨著η0U的增大波動性增大;載荷越大,增大的幅度就越小;Pmax的位置即牙坐標值隨著η0U的增大在減小,即逐漸向入口區(qū)移動。 5.應用多元回歸理論,建立了重載工況條件下輪齒接觸區(qū)次表面主剪應力最大值τmax與乘積η0U之間的回歸方程;诖朔匠,可以在設計重載齒輪傳動時定量考慮潤滑劑粘度和齒輪轉速的綜合影響。這對完善齒輪傳動接觸疲勞強度設計理論、提高設計結果可靠性具有積極意義。 本文不足之處是數值計算限于全膜潤滑狀況下進行,未能考慮由于齒面粗糙度效應所引起的時變性。
[Abstract]:The basic design of the contact fatigue strength of gear transmission is the current Hertz theory, Hertz theory is applicable only to a static smooth surface between the dry contact conditions and the gear transmission are quite different, because most of running gear transmission under lubricating condition. In order to compensate for this difference, calculating the bearing capacity of the international standard of involute cylindrical gear (ISO/6336:1996) and the corresponding national standards (GB3840-1997) are recommended lubrication coefficient and velocity coefficient, some scholars also discussed the influence of gear lubricant viscosity and rotational speed on the gear contact stress. However, it is not difficult to understand, the lubricant viscosity numerical selection and gear speed are related. Therefore, it is necessary to study the comprehensive effect of the two contact fatigue stress of gear transmission in theory.
This paper firstly established the lubrication model of involute cylindrical gear transmission; then, based on the thermal elastohydrodynamic lubrication theory, the multigrid method, multigrid integral method, the column scanning method respectively for tooth surface pressure distribution, oil film thickness and temperature distribution; on the basis of using elastic contact theory to solve the tooth contact surface should be the stress distribution; finally, mainly for heavy load, especially heavy load gear lubricant viscosity and 0 respectively from the tooth surface integrated velocity u 0U product fixed, fixed viscosity variable speed, constant speed integrated variable viscosity, viscosity and velocity are increasing in four ways, a total of 588 groups of numerical calculations summary of numerical calculation. We can get the following main conclusions:
1. in the product integrated speed of lubricant viscosity and tooth surface of 0U fixed, and change any amount of force will not influence on the contact fatigue of gear transmission.
2. when the contact stress is pH = 1.0GPa Hertz, regardless of how to change the lubricant viscosity, tooth contact surface the maximum principal shear value corresponding to Max were less than Hertz contact stress; especially when PH is larger than 1.3GPa, Max decreased with increased 0U, it also revealed the lubrication to reduce the beneficial effects of tooth contact stress is necessary. In particular, for the Hertz contact load force pH1.3GPa, when the gear speed is fixed, Max and lubricant viscosity showed a parabola relationship between the 0, when the viscosity is greater than a certain value, the tooth contact stress with the increase of viscosity does not fall by this theory, experimental results have been verified previous conclusions. However, as mentioned above, the international standard (ISO/6336:1996) and the corresponding national standard (GB3840-1997) in the lubrication coefficient increase with the increase of the lubricant viscosity monotonously, It is reasonable to think that the lubrication coefficient is generally applicable only to heavy load gear transmission.
3. the maximum principal shear X coordinate values with the increase of Max tau ETA 0U moves to outlet zone stress; and change the Z position of Max does not increase with the tau tau ETA 0U product, basically constant at 0.8.
4. second Pmax with the increase of pressure peak value of ETA 0U increased volatility; the larger the load is, the rate of increase is smaller; the Pmax is the position of the teeth coordinate 0U increases with ETA decreases, which gradually moved to the entrance area.
5. application of multivariate regression theory, a heavy load tooth contact surface the maximum principal shear stress regression equation between the max and the product of tau ETA 0U. Based on this equation, can be in the design of gear transmission when considering quantitative effects of lubricant viscosity and gear speed. This will improve the gear contact fatigue strength the design theory is of positive significance to improve the reliability of the design.
The shortcoming of this paper is that the numerical calculation is limited to full film lubrication, and the time variability caused by the tooth roughness effect is not considered.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TH132.41
【參考文獻】
相關期刊論文 前10條
1 尹健,羅延科,李屹;考慮彈性流體動壓潤滑的齒輪傳動優(yōu)化設計[J];機床與液壓;2003年03期
2 溫詩鑄;;潤滑理論研究的進展與思考[J];摩擦學學報;2007年06期
3 王優(yōu)強,蘇海濱,宋開利,黃丙習;齒輪彈流潤滑分析的簡化算法[J];煤礦機械;2005年01期
4 賀治成;張建軍;王優(yōu)強;;考慮沖擊載荷的直齒圓柱齒輪彈流潤滑數值分析[J];煤礦機械;2007年07期
5 黃平,溫詩鑄;多重網格法求解線接觸彈流問題[J];清華大學學報(自然科學版);1992年05期
6 溫詩鑄,朱東;等溫彈流潤滑問題的直接迭代解[J];潤滑與密封;1985年04期
7 曲慶文;;齒輪傳動的主動摩擦學設計方法[J];潤滑與密封;2006年02期
8 張增強;高創(chuàng)寬;尹曉亮;;潤滑油粘度對齒輪接觸疲勞壽命影響的研究[J];機械工程與自動化;2008年06期
9 潘登;亓秀梅;高創(chuàng)寬;;齒輪轉速對齒輪傳動接觸疲勞壽命影響的研究[J];機械工程與自動化;2010年05期
10 王優(yōu)強,李鴻琦,佟景偉,楊沛然;多重網格法求解齒輪穩(wěn)態(tài)彈流潤滑的完全數值解[J];天津大學學報;2004年11期
,本文編號:1383812
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1383812.html