基于Chunk Folding的多租戶云數(shù)據(jù)存儲(chǔ)緩存管理機(jī)制
[Abstract]:With the development of network technology and the emergence of outsourcing computing and storage, a new computing model--cloud computing, is emerging. The so-called cloud computing means that the configurable shared computing resources, such as network, storage, memory, application, etc., are conveniently accessed through the network, and the supply and release of computing resources are not required or require little manual participation. As far as is concerned, SaaS (Software as a Service) is the best form of implementation of recognized cloud computing. In SaaS mode, service providers need to store data for thousands of tenants, while allocating a single database instance for each tenant requires a large amount of resources, and virtually any database instance is very low in most cases And this leads to a lot of resource waves. Fee. For this issue, a shared database shared storage mode is proposed to address resource waste such as Universal Table, Pivot Table, Chunk Foling, and so on for database instances with similar storage patterns, while in order to reduce resource waves for database instances that do not have similar storage patterns The Database Consolidation is proposed to further reduce the number of instances of the database to get economies of scale The shared storage mode and the database combination can greatly reduce the number of database instances, thus reducing the resource waste, but the cache management mechanism of the multi-tenant database built on the basis of the traditional database has the following defects or disadvantages war: (1) data block cache replacement unit The traditional database caching mechanism uses the data block as a cache unit, and under the multi-tenant shared storage architecture, any data block contains irrelevant data of a large number of other tenants, and the data block is used as a cache unit to lead to a large amount of cache resources. waste. (2) Inter-tenant cache resource points The traditional database caching mechanism lacks the concept of multi-tenancy, and for the request from the tenant, the traditional caching mechanism can cache management from the point of improving the overall performance of the database, which can lead to the resource allocation among the tenants. Extremely unreasonable, such as high-frequency access to the tenant's resources to seize the low-frequency access to the tenant, so that the SLA response time requirements of the low-frequency access tenant are not guaranteed, which is in contrast to the flexibility in the cloud computing environment and on demand characteristic phase violation. (3) Lack of cloud cache resource allocation Effective distribution mechanism. In the cloud computing environment, to get good scalability and load balance, the tenant data is divided into a plurality of data nodes for storage, and how to determine the cache contents of each node makes it possible to: (a) the SLA of the tenant The time should be met, (b) the cloud cache efficiency (the number of I/ Os) is as high as possible, the cloud cache resources consume as little as possible, and (c) each sub-node I/ O load balancing. Based on the above-mentioned problems and challenges of the multi-tenant database cache management mechanism in the cloud computing environment, combined with the characteristics of the Chunk Foling shared storage mode, from the cache replacement unit, the multi-tenant feature and the cloud cache resource association In this paper, an adaptive load dynamic cache unit generation mechanism, a cache unit I/0 valuation model and a multi-tenant are proposed. The cloud cache resource allocation mechanism. This article The main work and achievements include: (1) proposed a dynamic based on Chunk Foling The mechanism uses the physical storage mode of the tenant's request load and the tenant background Chunk Foling to share the physical storage mode of the storage structure as input, outputs a series of column (set) cache replacement units, and replaces the cache replacement unit with the data block cache replacement unit of the traditional database. can greatly reduce the delay Save and improve cache utilization. (2) give a slow The I/ O benefit valuation model of the storage unit. The model is used to query the execution plan of the optimizer and the characteristics of the Chunk Foling to obtain the I/0 benefit of each cache replacement unit, and the ratio of the benefit value to the cache space occupied by the cache replacement unit is used as the cache replacement unit. The I/0 benefit rate (half-hit rate) of each cache replacement unit is weighted according to the I/ O load condition of the current node, and the I/0 benefit rate of each cache replacement unit is weighted and corrected as a standard for measuring whether to cache the replacement unit, instead of the traditional I/ O load condition of the current node, hit rate as a measure of cache or not So that the overall benefit of the cache is improved. (3) Two types of cache allocation are given. Slightly, tenant-level and system-level cache allocation policies. The performance index of the relevant cache unit is modified. The on-line dynamic adjustment of the tenant cache allocation is realized through the tenant-level cache allocation strategy, and the system cache is realized by the system-level cache allocation policy. In order to reduce the overall cache consumption of the system, this paper presents the corresponding solution mechanism--multi-tenant cloud data storage and cache management mechanism (Multi-Tenant Memory Management for Clou) for multi-tenant databases built on the basis of the traditional database. d data storage, M3C), which is based on the tenant's SLA target to allocate cache for multi-tenancy, lowe
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP333
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐濟(jì)仁,牛紀(jì)海,陳家松;WAV文件格式實(shí)例分析[J];微型機(jī)與應(yīng)用;2002年03期
2 呂學(xué)強(qiáng),郭軍,姚天順;英漢機(jī)器翻譯系統(tǒng)ECT中的知識(shí)庫(kù)[J];小型微型計(jì)算機(jī)系統(tǒng);2004年08期
3 劉瑞祥 ,陳立亮 ,閔光國(guó) ,袁浩揚(yáng);VESA高分辨模式下的FLIC動(dòng)畫(huà)演示技術(shù)[J];電子與電腦;1996年10期
4 李軍;立體漢字動(dòng)畫(huà)的制作、編輯與特技播放[J];電腦編程技巧與維護(hù);1998年11期
5 陳立群;INFORMIX數(shù)據(jù)庫(kù)應(yīng)用[J];中國(guó)金融電腦;2000年06期
6 姚建東,秦軍,古志民;兩種新的緩沖區(qū)溢出攻擊原理及防范[J];計(jì)算機(jī)工程與應(yīng)用;2003年10期
7 胡艷維;活用ASP把圖片上傳到數(shù)據(jù)庫(kù)[J];萍鄉(xiāng)高等?茖W(xué)校學(xué)報(bào);2003年04期
8 田新宇;馬永強(qiáng);王偉;;網(wǎng)絡(luò)存儲(chǔ)陣列中CACHE的設(shè)計(jì)[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2011年06期
9 吉根林;Windows的多媒體世界[J];多媒體世界;1994年06期
10 董歡慶,李戰(zhàn)懷,王彥龍,石維盛;Linux卷管理系統(tǒng)Snapshot技術(shù)的分析與研究[J];計(jì)算機(jī)工程;2004年02期
相關(guān)會(huì)議論文 前10條
1 劉昱;陳紅;王珊;;基于Chunk的緩存優(yōu)化與管理[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
2 盧艷民;焦有章;陳紅;;基于語(yǔ)義Chunk的動(dòng)態(tài)實(shí)體化視圖技術(shù)[A];第二十二屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2005年
3 田新鋒;李戰(zhàn)懷;朱巖;;CHUNK中的多維數(shù)據(jù)壓縮[A];第十八屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2001年
4 印瑩;鮑玉斌;趙宇海;孫煥良;于戈;;Q-Dwarf——語(yǔ)義OLAP壓縮算法Dwarf的快速實(shí)現(xiàn)[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2004年
5 ;Peer-assisted Video-on-Demand with an Informed Interface of Chunk Availability[A];Proceedings 2010 IEEE 2nd Symposium on Web Society[C];2010年
6 李娜;陳紅;;CWMIV:使用改進(jìn)的多版本進(jìn)行并發(fā)控制[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
7 張新宇;王珊;陳紅;杜小勇;;基于三級(jí)索引機(jī)制的并行數(shù)據(jù)倉(cāng)庫(kù)的存儲(chǔ)結(jié)構(gòu)[A];第十九屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2002年
8 陳湘川;張達(dá)人;唐孝威;;視空間短時(shí)記憶的超廣度研究[A];第八屆全國(guó)心理學(xué)學(xué)術(shù)會(huì)議文摘選集[C];1997年
9 周玉;宗成慶;徐波;;基于多層過(guò)濾的統(tǒng)計(jì)機(jī)器翻譯[A];第二屆全國(guó)學(xué)生計(jì)算語(yǔ)言學(xué)研討會(huì)論文集[C];2004年
10 任登君;李珩;張俐;姚天順;;基于詞對(duì)齊的雙語(yǔ)組塊對(duì)齊[A];第二屆全國(guó)學(xué)生計(jì)算語(yǔ)言學(xué)研討會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 重慶 甘露;在Linux中實(shí)現(xiàn)RAID[N];電腦報(bào);2001年
2 廣東 李鋒;妙用 Cache 優(yōu)化 Windows 2000[N];電腦報(bào);2001年
3 龍哥;軟件應(yīng)用問(wèn)答![N];中國(guó)計(jì)算機(jī)報(bào);2004年
4 t920(ChinaUnix 安全版版主);一次Web服務(wù)器滲透測(cè)試經(jīng)驗(yàn)(上)[N];計(jì)算機(jī)世界;2004年
5 記者 齊芳;“頓悟”是怎么發(fā)生的[N];光明日?qǐng)?bào);2011年
6 王偉鋒;系統(tǒng)管理類[N];中國(guó)計(jì)算機(jī)報(bào);2001年
7 徐志忠;保險(xiǎn)行銷(xiāo)與教練魔法[N];中國(guó)保險(xiǎn)報(bào);2003年
8 張友偉;3D MAX影視動(dòng)畫(huà)大制作(未完待續(xù))[N];電腦報(bào);2001年
9 于海軍;內(nèi)存也需要保潔[N];中國(guó)電腦教育報(bào);2003年
10 山東省蓬萊市電業(yè)公司信息中心 孫開(kāi)云;在Redhat Linux AS 4下實(shí)現(xiàn)軟件RAID[N];計(jì)算機(jī)世界;2005年
相關(guān)博士學(xué)位論文 前4條
1 王燦;基于在線重復(fù)數(shù)據(jù)消除的海量數(shù)據(jù)處理關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2012年
2 萬(wàn)成威;基于P2P流媒體模型的流量特征分析及實(shí)時(shí)分類[D];解放軍信息工程大學(xué);2012年
3 鄧亞丹;面向共享Cache多核處理器的數(shù)據(jù)庫(kù)查詢執(zhí)行優(yōu)化技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
4 張坤;面向多租戶應(yīng)用的云數(shù)據(jù)隱私保護(hù)機(jī)制研究[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 姚金成;基于Chunk Folding的多租戶云數(shù)據(jù)存儲(chǔ)緩存管理機(jī)制[D];山東大學(xué);2012年
2 卓亞芬;ChunkedLOD—海量地形的實(shí)時(shí)繪制系統(tǒng)[D];浙江大學(xué);2004年
3 趙紀(jì)元;面向文景轉(zhuǎn)換的中文語(yǔ)義角色標(biāo)注研究[D];哈爾濱工業(yè)大學(xué);2007年
4 吉音(Girum Dagnaw Dubale);云備份系統(tǒng)中閃存輔助分段式布隆過(guò)濾器的研究[D];華中科技大學(xué);2012年
5 王宇;基于多租戶SaaS的模式映射技術(shù)[D];吉林大學(xué);2012年
6 吳欣鎧;結(jié)合memcached技術(shù)的社交游戲《人人城市》的設(shè)計(jì)與實(shí)現(xiàn)[D];南京大學(xué);2012年
7 宋揚(yáng);基于混合傳送機(jī)制的P2P節(jié)點(diǎn)緩存策略的研究[D];北京郵電大學(xué);2012年
8 羅皓;RTMP媒體流嵌入SIP軟交換網(wǎng)絡(luò)的研究與實(shí)現(xiàn)[D];華南理工大學(xué);2012年
9 陳香香;云計(jì)算中MapReduce性能優(yōu)化及應(yīng)用[D];重慶大學(xué);2011年
10 張軼彬;分布式文件系統(tǒng)客戶端的設(shè)計(jì)與實(shí)現(xiàn)[D];上海交通大學(xué);2011年
,本文編號(hào):2494596
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2494596.html