基于DM642車輛視頻檢測(cè)器
[Abstract]:Vehicle is the most important part of urban road traffic, so the research of vehicle video detector is of great significance to the development of urban intelligent transportation system. With the increasing demand of intelligent transportation system for miniaturization, low power consumption, low cost, stability and reliability, the research of embedded vehicle video detector has important practical significance and application value. In this paper, based on the digital signal processor (DSP) TMS320DM642 platform of TI Company, the embedded vehicle video detection algorithm is studied, and the embedded video vehicle detector is designed and implemented. The main contents and research results of the paper include: 1. Embedded algorithm design: in the framework of virtual coil algorithm, this paper introduces simple statistics such as speed, variance and mean, and proposes a fast video vehicle detection algorithm based on virtual coil statistics. Firstly, the virtual coil velocity statistics are calculated based on the block matching principle, and then the background modeling is carried out by using the high-order statistics block method, and the mean and variance statistics of the foreground image are obtained. Finally, the logical operation of statistics is used to judge the state of vehicle arrival, passing, leaving, stopping and so on. On the premise of meeting the real-time requirements, the algorithm has strong robustness to the interference of light, shadow and other external conditions, and is suitable for running on embedded platforms. The experimental results show that the detection speed of the algorithm can reach 50 frames per second on PC, and the detection rate can reach 98% in daytime and 93% in night under ideal conditions. When the vehicles are dense and shaded during the day, the detection rate reaches 94%, which meets the actual demand. 2. Program implementation and optimization: this paper takes the vehicle detection algorithm based on virtual coil statistics as the software core, and implements the embedded video vehicle detector on DM642 platform. The program is optimized by using inline function, expanding loop, rearranging software pipeline, using ping-pong mechanism to transmit data and so on. The test results of the actual road show that the embedded vehicle detector developed in this paper can achieve the detection speed of 20 frames per second and achieve real-time detection. At the same time, the vehicle detection rate can reach 96% during the day and 90% at night. The false detection rate is not more than 2% during the day, the missed detection rate is 4% during the day, the false detection rate is not more than 4% at night, and the missed detection rate is 10% at night. The test results show that the video vehicle detector based on DM642 can detect the vehicle in real time, at the same time, it also ensures the accuracy of the detection, and performs well in the balance between the detection speed and the detection rate. It lays a certain foundation for the development and application of embedded video vehicle detector in the future.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:U495;TP368.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張玲,陳麗敏,何偉,郭磊民;基于視頻的改進(jìn)幀差法在車流量檢測(cè)中的應(yīng)用[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
2 宋勝利;曾巒;;DSP/BIOS在數(shù)字圖像處理中的應(yīng)用[J];國(guó)外電子測(cè)量技術(shù);2005年12期
3 艾紅;孫碩;;紅外測(cè)量在車流量監(jiān)測(cè)中的應(yīng)用[J];紅外技術(shù);2008年04期
4 盛翊智,謝寒生,李炳基,黃瓊;基于快速匹配算法的虛擬線圈設(shè)計(jì)[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
5 王亮,胡衛(wèi)明,譚鐵牛;人運(yùn)動(dòng)的視覺(jué)分析綜述[J];計(jì)算機(jī)學(xué)報(bào);2002年03期
6 劉海峰,郭寶龍,馮宗哲;用于塊匹配運(yùn)動(dòng)估值的正方形-菱形搜索算法[J];計(jì)算機(jī)學(xué)報(bào);2002年07期
7 王圣男,郁梅,蔣剛毅;智能交通系統(tǒng)中基于視頻圖像處理的車輛檢測(cè)與跟蹤方法綜述[J];計(jì)算機(jī)應(yīng)用研究;2005年09期
8 馬楓;張慶英;;基于以太網(wǎng)的超聲波車流量自動(dòng)檢測(cè)系統(tǒng)設(shè)計(jì)[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2007年01期
9 何偉;陳彬;張玲;;DSP/BIOS在基于DM642的視頻圖像處理中的應(yīng)用[J];信息與電子工程;2006年01期
10 魏武,張起森,王明俊,黃中祥;基于計(jì)算機(jī)視覺(jué)和圖像處理的交通參數(shù)檢測(cè)[J];信息與控制;2001年03期
相關(guān)碩士學(xué)位論文 前8條
1 丁莉雅;基于視頻圖像處理的交通信息采集系統(tǒng)[D];浙江大學(xué);2003年
2 萬(wàn)文靜;基于光流的圖像目標(biāo)跟蹤方法研究[D];西北工業(yè)大學(xué);2006年
3 王衛(wèi)岳;基于TMS320DM642的車牌識(shí)別系統(tǒng)[D];浙江大學(xué);2007年
4 朱克忠;基于光流法對(duì)移動(dòng)目標(biāo)的視頻檢測(cè)與應(yīng)用研究[D];合肥工業(yè)大學(xué);2007年
5 高鵬;基于嵌入式的監(jiān)測(cè)監(jiān)控系統(tǒng)硬件開(kāi)發(fā)與實(shí)現(xiàn)[D];北京郵電大學(xué);2007年
6 李天長(zhǎng);基于DM642的嵌入式實(shí)時(shí)圖像處理的研究[D];重慶大學(xué);2008年
7 錢毅;基于3G標(biāo)準(zhǔn)的嵌入式網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];廈門大學(xué);2008年
8 趙克棟;視頻監(jiān)控系統(tǒng)設(shè)計(jì)與工程應(yīng)用[D];北京郵電大學(xué);2009年
,本文編號(hào):2481928
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2481928.html