P300腦機(jī)接口系統(tǒng)的范式設(shè)計及其算法研究
[Abstract]:Brain-computer interface (Brain-Computer Interface, BCI) technology does not depend on the peripheral nervous system and muscle tissue of the brain to open up a new special channel for the brain and the outside world. It can control the external environment and device directly through EEG without the need of language or limb movement. At present, the research of brain-computer interface is in the developing stage. How to recognize EEG pattern quickly and accurately is a hot issue in the field of brain-computer interface. In this paper, a P300-based brain-computer interface system is studied. P300 is a small probability evoked potential, which is often used to construct EEG signals of brain-computer interface system. P300 response is a positive wave around the target stimulation 300ms. P300-based brain-computer interface system, the subjects do not need special training to achieve better results. The work of this paper is to study the P300 experimental paradigm and classification recognition. The main work is as follows: (1) the Bayesian linear discriminant analysis (BLDA),) is selected to study the characteristics of P300 signals generated by random excitation and non-random excitation by processing the experimental data of off-line and on-line phases. It is concluded that P300 induced by random excitation is more obvious than non-random excitation and is easy to identify. (2) using Bayesian linear discriminant analysis (LDA4) (BLDA), linear discriminant analysis (LDA4) and support vector machine (SVM) as classification recognition algorithms, the classification results of P300 signals generated by off-line random excitation are compared. The classification accuracy based on BLDA algorithm is the best; the classification accuracy under LDA4 algorithm is better than that of BLDA; the classification accuracy under SVM is relatively poor. And SVM takes a long time to identify, and BLDA takes the shortest time, much faster than SVM. (3) Independent component analysis (ICA) is introduced to eliminate the noise of EEG signals. The two algorithms, Infomax ICA and FastICA, are used to eliminate the eye electricity in EEG signals, in order to get the EEG signals with less noise. The Bayesian linear discriminant analysis (BLDA) method is used to judge the denoising effect of Infomax ICA and FastICA, and the results are compared with those of non-denoising to verify the effectiveness of de-noising.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP334.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程明,高上凱,張琳;基于腦電信號的腦—計算機(jī)接口[J];北京生物醫(yī)學(xué)工程;2000年02期
2 楊立才,李佰敏,李光林,賈磊;腦-機(jī)接口技術(shù)綜述[J];電子學(xué)報;2005年07期
3 張宇;張建華;王行愚;金晶;;基于FastICA的P300電位快速提取方法[J];華東理工大學(xué)學(xué)報(自然科學(xué)版);2009年05期
4 高諾;魯守銀;張運楚;姚慶梅;;腦機(jī)接口技術(shù)的研究現(xiàn)狀及發(fā)展趨勢[J];機(jī)器人技術(shù)與應(yīng)用;2008年04期
5 李鋼;王蔚;張勝;;支持向量機(jī)在腦電信號分類中的應(yīng)用[J];計算機(jī)應(yīng)用;2006年06期
6 周衛(wèi)東;基于獨立分量分析的生理信號盲源分離(英文)[J];山東生物醫(yī)學(xué)工程;2002年02期
7 葛瑜;楊鋼;;腦機(jī)接口系統(tǒng)中EEG信號特征提取與分類[J];微計算機(jī)信息;2008年18期
8 吳正茂,孫云蓮;基于快速獨立分量分析的多維混合信號盲分離[J];武漢大學(xué)學(xué)報(工學(xué)版);2005年04期
9 李婷;邱天爽;;基于帶參考信號的ICA算法的腦電信號眨眼偽差的分離研究[J];中國生物醫(yī)學(xué)工程學(xué)報;2006年03期
10 張宇;王行愚;張建華;金晶;;離散粒子群優(yōu)化-貝葉斯線性判別分析算法用于視覺事件相關(guān)電位P300的分類[J];中國生物醫(yī)學(xué)工程學(xué)報;2010年01期
相關(guān)碩士學(xué)位論文 前1條
1 黃安湖;P300腦電誘發(fā)電位的分類識別及在腦機(jī)接口中的應(yīng)用[D];山東大學(xué);2008年
,本文編號:2442695
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2442695.html