支持混合計(jì)算模式的異構(gòu)多核系統(tǒng)若干關(guān)鍵技術(shù)的研究
[Abstract]:The applications of high density computing, such as graphics, image, scientific calculation, big data analysis and so on, have the characteristics of large data throughput and high real-time requirements, and have the ability to process microprocessors. Data throughput and processing parallelism are higher requirements. Multi-core technology expands the development direction of processor from single vertical development to horizontal development, greatly reduces the difficulty of processor design when the same computing power is achieved, and also alleviates the restriction of power consumption and other factors on processor design. In the past ten years, it has developed rapidly into the mainstream of processor design. Reconfigurable computing takes into account the high efficiency of customized computing and the flexibility of general computing. It is an excellent computing architecture to solve the computing requirements in the field of high-density computing. As an important technology in the modern processor design, dynamic scheduling technology can eliminate the data pseudo-correlation between tasks, improve the efficiency of the processor, and improve the working ability of the processor. There are two typical data computing structures: storage computing and stream computing. The method of storage and calculation is convenient to realize the reuse of data, but it takes a lot of time to complete the data handling. Stream computing can hide the data handling time, greatly improve the computational throughput, but will bring higher bandwidth pressure to data storage and exchange. Based on the above background, this paper discusses and studies the key technologies of heterogeneous multi-core systems supporting hybrid computing mode. The main work is as follows: first, This paper introduces and analyzes the original architecture of heterogeneous multi-core computing system based on multi-chip network, reconstructs the target system with the idea of two-level computing architecture, and standardizes the working mechanism of multi-core computing system. The instruction set of top-level task instruction is designed. Secondly, a main control unit is designed for task scheduling in multi-core computing systems. Dynamic scheduling and register renaming techniques are introduced to realize the task instruction level disordered multi-transmission. Furthermore, the implementation scheme of thread-level parallelism is explored, and the task launching efficiency of the target system is improved. Thirdly, a coarse-grained reconfigurable computing unit is designed, which uses reconfigurable technology to support a variety of computing modes, and optimizes the common algorithms in the field of high-density computing. Under the condition of limited resources, high computing power is achieved. Finally, this paper tests and evaluates the design and performance of the improved unit, validates the correctness of the design, discusses the problems needing attention in the algorithm mapping, and puts forward the direction of further optimization of the system.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP332
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龔建偉;吳月明;沈蒙童;高琦翔;;淺談民用級(jí)X86處理器性能發(fā)展趨勢[J];科技創(chuàng)新與應(yīng)用;2017年05期
2 本刊編輯部;;神威·太湖之光超級(jí)計(jì)算機(jī)[J];中國信息化;2017年01期
3 孫彩霞;隋兵才;王蕾;王永文;黃立波;李文哲;王俊輝;;亂序超標(biāo)量處理器核的性能分析與優(yōu)化[J];國防科技大學(xué)學(xué)報(bào);2016年05期
4 ;“國之重器”[J];中國經(jīng)濟(jì)信息;2016年13期
5 李樂;李濤;;同時(shí)多線程處理器的指令調(diào)度器設(shè)計(jì)[J];微電子學(xué)與計(jì)算機(jī);2016年06期
6 劉j驕;謝國琪;李仁發(fā);楊柳;劉彥;;異構(gòu)系統(tǒng)雙關(guān)鍵級(jí)分布式功能的動(dòng)態(tài)調(diào)度[J];計(jì)算機(jī)研究與發(fā)展;2016年06期
7 周佳佳;李濤;黃小康;;多核同時(shí)多線程處理器的線程調(diào)度器設(shè)計(jì)[J];電子技術(shù)應(yīng)用;2016年01期
8 胡向東;楊劍新;朱英;;高性能多核處理器申威1600[J];中國科學(xué):信息科學(xué);2015年04期
9 倪偉;邵響;張溯;宋宇鯤;楊延輝;卜冀春;;多核混合可重構(gòu)計(jì)算系統(tǒng)MRCS的設(shè)計(jì)[J];電子測量與儀器學(xué)報(bào);2015年02期
10 劉鵬;趙榮彩;趙博;高偉;;一種面向SIMD擴(kuò)展部件的向量化統(tǒng)一架構(gòu)[J];計(jì)算機(jī)科學(xué);2014年09期
相關(guān)博士學(xué)位論文 前4條
1 陳鵬;面向大數(shù)據(jù)應(yīng)用的異構(gòu)可重構(gòu)平臺(tái)關(guān)鍵技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2015年
2 李柏楠;面向領(lǐng)域應(yīng)用的可重構(gòu)系統(tǒng)關(guān)鍵技術(shù)研究[D];解放軍信息工程大學(xué);2015年
3 王侃文;領(lǐng)域?qū)S每芍貥?gòu)計(jì)算結(jié)構(gòu)研究[D];復(fù)旦大學(xué);2011年
4 孫彩霞;同時(shí)多線程處理器中的資源分配策略研究[D];國防科學(xué)技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前7條
1 張揚(yáng);多核系統(tǒng)中支持任務(wù)級(jí)亂序多發(fā)射的主控核設(shè)計(jì)[D];合肥工業(yè)大學(xué);2016年
2 楊俊;多核系統(tǒng)靜態(tài)任務(wù)調(diào)度問題研究[D];合肥工業(yè)大學(xué);2016年
3 高曉川;面向動(dòng)態(tài)異構(gòu)多核處理器的公平性任務(wù)調(diào)度研究[D];中國科學(xué)技術(shù)大學(xué);2015年
4 吳凌云;面向高密度計(jì)算的NoC平臺(tái)多發(fā)射技術(shù)研究[D];合肥工業(yè)大學(xué);2015年
5 石祥龍;基于異構(gòu)多核處理器的靜態(tài)任務(wù)調(diào)度算法研究[D];南京郵電大學(xué);2015年
6 顏永吉;異構(gòu)多核SoC中可重構(gòu)并行處理單元設(shè)計(jì)與實(shí)現(xiàn)[D];合肥工業(yè)大學(xué);2013年
7 肖福明;高密度計(jì)算與多核系統(tǒng)設(shè)計(jì)技術(shù)研究[D];合肥工業(yè)大學(xué);2010年
,本文編號(hào):2390842
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2390842.html