基于OpenStack云平臺(tái)的計(jì)算資源動(dòng)態(tài)調(diào)度及管理
[Abstract]:Cloud computing is a new generation of IT model, which is developed from grid computing, parallel computing and distributed computing. It can be used by users to easily access a configurable computing resource (such as computing, network, storage, etc.) via the network on demand. The shared pool of applications, services, etc., can be quickly opened and released with minimal management effort or service provider intervention. At present, the resources in the cloud environment are virtualized by virtualization technology, forming a huge virtual resource pool, and then providing the users with services through dynamic scalable deployment. With the continuous increase in the number of users using cloud computing, the scale of cloud data centers is also increasing. How to make the virtualization resources in the cloud efficient and quickly available to users, Reducing the waiting time of users and improving the utilization of the whole cloud data center has become an important issue of dynamic scheduling of virtual machine resources in cloud computing environment. This paper mainly studies the dynamic scheduling strategy of cloud data center virtualization resources. Based on the most popular open source cloud computing platform OpenStack, the following works and innovations are carried out: (1) the basic characteristics, architecture and key technologies of current cloud computing are analyzed, and several open source cloud computing platforms are compared. At the same time, the requirements and key technologies of resource scheduling and management in cloud data center are studied in detail. (2) based on the architecture of OpenStack, the virtual resources are modeled, the resources are described from the service level and the resource level, and a real-time monitoring feedback comprehensive load balancing scheduling strategy and algorithm for computing resources are proposed, respectively, using CPU, memory. The four dimensions of storage and network bandwidth are used to analyze the average load of computing resources of cloud platform. At the same time, the unbalance of data center and physical server of cloud platform are calculated respectively. By comparing the algorithm with rotation scheduling algorithm, OpenStack scheduling algorithm and random selection algorithm on the cloudsim simulation platform, the results show that the proposed algorithm can obtain a better deployment location for the applied virtual machine instance. It can make the resources of the cloud data center achieve more load balance, which proves the validity and stability of the algorithm. (3) combined with cluster management tool xCAT and secondary development of resource automation management platform in OpenStack environment, it can effectively monitor and manage resources, and can dynamically expand resources in cloud environment in an automatic way. Realize the automatic operation and maintenance of scale and the deployment management of naked machine.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP308
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 華夏渝;鄭駿;胡文心;;基于云計(jì)算環(huán)境的蟻群優(yōu)化計(jì)算資源分配算法[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
2 孫瑞鋒;趙政文;;基于云計(jì)算的資源調(diào)度策略[J];航空計(jì)算技術(shù);2010年03期
3 張前進(jìn);齊美彬;李莉;;基于應(yīng)用層負(fù)載均衡策略的分析與研究[J];計(jì)算機(jī)工程與應(yīng)用;2007年32期
4 李強(qiáng);郝沁汾;肖利民;李舟軍;;云計(jì)算中虛擬機(jī)放置的自適應(yīng)管理與多目標(biāo)優(yōu)化[J];計(jì)算機(jī)學(xué)報(bào);2011年12期
5 陳全;鄧倩妮;;云計(jì)算及其關(guān)鍵技術(shù)[J];計(jì)算機(jī)應(yīng)用;2009年09期
6 岳冬利;劉海濤;孫傲冰;;IaaS公有云平臺(tái)調(diào)度模型研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2011年06期
相關(guān)碩士學(xué)位論文 前4條
1 葛新;基于云計(jì)算集群擴(kuò)展中的調(diào)度問(wèn)題研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
2 張先哲;分布式系統(tǒng)中的負(fù)載平衡檢測(cè)與優(yōu)化策略研究[D];河南大學(xué);2009年
3 趙春燕;云環(huán)境下作業(yè)調(diào)度算法研究與實(shí)現(xiàn)[D];北京交通大學(xué);2009年
4 劉鵬程;云計(jì)算中虛擬機(jī)動(dòng)態(tài)遷移的研究[D];復(fù)旦大學(xué);2009年
,本文編號(hào):2307038
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2307038.html