硬件多路映射的軟硬件劃分算法研究
[Abstract]:With the development of embedded system and the combination of software and hardware, the traditional design method can not meet the needs of more and more complex design. In order to overcome the shortcomings of traditional design methods, embedded designers put forward and gradually improve the hardware and software co-design method. Software / hardware partitioning technology is one of the key technologies in hardware and software co-design. It means that the tasks of the system are divided into software or hardware when the system is designed, and the partition results directly determine the merits and demerits of the system design. Therefore, it is very important to study the software and hardware partitioning technology of embedded system. At present, the research on software and hardware partitioning is mainly focused on binary (binary partitioning) partitioning, which acquires a software implementation mode and a hardware mode for each task in the system. It ignores the possibility that a task may have a variety of hardware implementations, that is, the problem of hardware multiplexing. In this paper, the hardware multiplex mapping problem is studied, and the local search algorithm BUB is compared with the genetic algorithm. The experimental results show that the genetic algorithm can get better partition results. In the process of further study, in view of the weak local search ability of genetic algorithm and the characteristics of hardware multipath mapping, this paper designs a mutation operator to replace the random mutation in the standard genetic algorithm by reinforcement learning. The local search ability and convergence speed of genetic algorithm are improved by making different chromosomes self-adaptively selective motion evolution. An example shows that the convergence speed and optimal solution of the improved genetic algorithm are better than that of the standard genetic algorithm. Multiple runs show that the algorithm has strong stability and good effect.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP368.1;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄒誼,莊鎮(zhèn)泉,李斌;基于量子遺傳算法的嵌入式系統(tǒng)軟硬件劃分算法[J];電路與系統(tǒng)學(xué)報(bào);2004年05期
2 王春玲;;流水線技術(shù)在基于FPGA的DSP運(yùn)算中的應(yīng)用研究[J];電子技術(shù);2009年06期
3 羅勝欽;馬蕭蕭;陸憶;;基于改進(jìn)的NSGA遺傳算法的SOC軟硬件劃分方法[J];電子學(xué)報(bào);2009年11期
4 邢冀鵬;鄒雪城;劉政林;陳毅成;;基于混沌優(yōu)化算法的軟硬件劃分[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年11期
5 熊志輝;李思昆;陳吉華;;具有初始信息素的螞蟻尋優(yōu)軟硬件劃分算法[J];計(jì)算機(jī)研究與發(fā)展;2005年12期
6 邢冀鵬;鄒雪城;劉政林;陳毅成;;K均值聚類和模擬退火融合的軟硬件劃分[J];計(jì)算機(jī)工程與應(yīng)用;2006年16期
7 羅莉;夏軍;何鴻君;劉瀚;;一種有效的面向多目標(biāo)軟硬件劃分的遺傳算法[J];計(jì)算機(jī)科學(xué);2010年12期
8 盛藍(lán)平,林濤;采用啟發(fā)式分支定界的軟硬件劃分[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年03期
9 李冉;郭兵;沈艷;王繼禾;伍元?jiǎng)?劉云本;;基于Hopfield神經(jīng)網(wǎng)絡(luò)和禁忌搜索的軟/硬件功耗劃分[J];計(jì)算機(jī)應(yīng)用;2011年03期
10 肖平;徐成;楊志邦;劉彥;;基于改進(jìn)模擬退火算法的軟硬件劃分[J];計(jì)算機(jī)應(yīng)用;2011年07期
本文編號(hào):2255637
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2255637.html