托管型數(shù)據(jù)中心激勵機制優(yōu)化算法分析與研究
發(fā)布時間:2018-10-05 13:13
【摘要】:針對緊急需求響應下托管型數(shù)據(jù)中心激勵機制中勝標方?jīng)Q策效率低的問題,分別采用動態(tài)規(guī)劃、遺傳算法、粒子群優(yōu)化及混合算法等方法對其激勵機制的優(yōu)化展開分析與研究。根據(jù)緊急需求響應的特點和算法需求建立托管型數(shù)據(jù)中心的激勵機制優(yōu)化模型,證明激勵機制中的勝標方?jīng)Q策問題為一個NPC問題。從理論上分析優(yōu)化算法使用的可行性及復雜度性,為算法在激勵機制中的應用提供了理論基礎。通過實驗仿真,分別從4種算法的處理規(guī)模、性能以及時間復雜度的角度進行闡述和對比,實驗結果表明,4種算法優(yōu)化了勝標方選擇最大化可供電力并滿足管理員的最大支付,體現(xiàn)了優(yōu)化算法解決問題的有效性及高效率性,提高了決勝標方?jīng)Q策的效率。
[Abstract]:In order to solve the problem of low efficiency of decision making in incentive mechanism of managed data center under emergency demand response, dynamic programming, genetic algorithm, particle swarm optimization and hybrid algorithm are used to analyze and study the optimization of incentive mechanism. According to the characteristics of emergency demand response and algorithm requirements, the incentive mechanism optimization model of managed data center is established. It is proved that the winner decision problem in incentive mechanism is a NPC problem. The feasibility and complexity of the optimization algorithm are analyzed theoretically, which provides a theoretical basis for the application of the algorithm in the excitation mechanism. Through the experimental simulation, the processing scale, performance and time complexity of the four algorithms are discussed and compared respectively. The experimental results show that the four algorithms optimize the choice of the winning party to maximize the power supply and meet the maximum payment of the administrator. It reflects the efficiency and efficiency of the optimization algorithm, and improves the efficiency of decision making.
【作者單位】: 桂林理工大學"嵌入式技術與智能信息處理"廣西高校重點實驗室;桂林理工大學信息科學與工程學院;
【基金】:國家自然科學基金項目(61563012、61540054) 廣西自然科學基金項目(2015GXNSFBA139260) 桂林理工大學科研啟動基金項目(002401003456) “嵌入式技術與智能信息處理”廣西高校重點實驗室主任基金項目(2016-01-05)
【分類號】:TP18;TP308
[Abstract]:In order to solve the problem of low efficiency of decision making in incentive mechanism of managed data center under emergency demand response, dynamic programming, genetic algorithm, particle swarm optimization and hybrid algorithm are used to analyze and study the optimization of incentive mechanism. According to the characteristics of emergency demand response and algorithm requirements, the incentive mechanism optimization model of managed data center is established. It is proved that the winner decision problem in incentive mechanism is a NPC problem. The feasibility and complexity of the optimization algorithm are analyzed theoretically, which provides a theoretical basis for the application of the algorithm in the excitation mechanism. Through the experimental simulation, the processing scale, performance and time complexity of the four algorithms are discussed and compared respectively. The experimental results show that the four algorithms optimize the choice of the winning party to maximize the power supply and meet the maximum payment of the administrator. It reflects the efficiency and efficiency of the optimization algorithm, and improves the efficiency of decision making.
【作者單位】: 桂林理工大學"嵌入式技術與智能信息處理"廣西高校重點實驗室;桂林理工大學信息科學與工程學院;
【基金】:國家自然科學基金項目(61563012、61540054) 廣西自然科學基金項目(2015GXNSFBA139260) 桂林理工大學科研啟動基金項目(002401003456) “嵌入式技術與智能信息處理”廣西高校重點實驗室主任基金項目(2016-01-05)
【分類號】:TP18;TP308
【相似文獻】
相關期刊論文 前10條
1 ;挖潛數(shù)據(jù)中心[J];金融電子化;2004年07期
2 陳瓊;;數(shù)據(jù)中心的綠色未來[J];互聯(lián)網(wǎng)周刊;2007年10期
3 那罡;徐健淞;;“心”數(shù)據(jù)時代 下一代數(shù)據(jù)中心五大看點[J];中國計算機用戶;2007年15期
4 許桂芳;;高校數(shù)據(jù)中心的建設與管理[J];中國教育信息化;2007年11期
5 王愛民;;“綠色”數(shù)據(jù)中心五步曲[J];軟件世界;2007年19期
6 張蕾;;追本溯源 尋找數(shù)據(jù)中心的綠色大道[J];數(shù)碼世界;2007年10期
7 ;數(shù)據(jù)中心勁吹綠色風[J];中國計算機用戶;2007年32期
8 包東智;;創(chuàng)建數(shù)據(jù)中心成為新熱點[J];電信快報;2007年09期
9 朱偉雄;;有問必答:構建綠色節(jié)能數(shù)據(jù)中心 第一期[J];信息方略;2008年05期
10 楊建光;路宗雷;;數(shù)據(jù)中心選址的探討[J];智能建筑與城市信息;2008年08期
相關會議論文 前10條
1 姚,
本文編號:2253521
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2253521.html
最近更新
教材專著