天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 計(jì)算機(jī)論文 >

野外探險(xiǎn)救助信息采集技術(shù)的研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-08-19 13:23
【摘要】:隨著人們生活水平的提高,野外登山探險(xiǎn)活動(dòng)逐漸增多,,隨之而來的野外遇險(xiǎn)事件頻發(fā),急需一種能夠?qū)崟r(shí)提供佩戴者生理信息、方向和姿態(tài)等信息的監(jiān)護(hù)設(shè)備來對(duì)野外探險(xiǎn)人員進(jìn)行監(jiān)測(cè)和預(yù)警。本文針對(duì)野外探險(xiǎn)救助信息采集這一市場(chǎng)需求,對(duì)野外探險(xiǎn)救助關(guān)鍵信息采集技術(shù)進(jìn)行了研究,自主設(shè)計(jì)了應(yīng)用于野外探險(xiǎn)環(huán)境的新型動(dòng)態(tài)電子血壓計(jì)和數(shù)字指南針,并以二者為核心,簡(jiǎn)單搭建了野外探險(xiǎn)救助信息監(jiān)測(cè)儀。 論文首先以野外信息監(jiān)測(cè)和遠(yuǎn)程醫(yī)療監(jiān)護(hù)為背景,介紹了國內(nèi)外野外信息監(jiān)測(cè)領(lǐng)域技術(shù)的發(fā)展現(xiàn)狀和背景,論述研究野外探險(xiǎn)信息采集技術(shù)的必要性與現(xiàn)實(shí)意義。其次,詳細(xì)介紹了關(guān)鍵信號(hào)采集技術(shù)的各種實(shí)現(xiàn)方案,并在對(duì)比各方案優(yōu)缺點(diǎn)后結(jié)合課題背景,提出本文關(guān)鍵信號(hào)采集方案。對(duì)于本課題而言,需要采集的關(guān)鍵信號(hào)主要包括血壓、心率、運(yùn)動(dòng)方向和運(yùn)動(dòng)姿態(tài)等。其中血壓和心率信號(hào)屬于人體生理信號(hào),通過采集體表信號(hào)經(jīng)過計(jì)算獲取,由動(dòng)態(tài)電子血壓計(jì)來實(shí)現(xiàn);運(yùn)動(dòng)方向和運(yùn)動(dòng)姿態(tài)主要由方向和姿態(tài)信息監(jiān)測(cè)模塊即高精度電子指南針來實(shí)現(xiàn)。動(dòng)態(tài)電子血壓計(jì)選擇基于脈搏波傳輸速度測(cè)量血壓法來設(shè)計(jì),而高精度數(shù)字指南針決定以地磁導(dǎo)航為理論基礎(chǔ)。 然后,講述了動(dòng)態(tài)血壓計(jì)和數(shù)字指南針的軟硬件設(shè)計(jì)過程及設(shè)計(jì)過程中遇到的各種困難與解決途徑。脈搏波信號(hào)的穩(wěn)定采集及信號(hào)相位差的計(jì)算是動(dòng)態(tài)血壓計(jì)設(shè)計(jì)的主要困難,在對(duì)比各種壓敏傳感器材料后,最終選用PVDF膜作為脈搏信號(hào)采集材料,創(chuàng)新性的設(shè)計(jì)了差分脈搏波傳感器;指南針基于地磁導(dǎo)航理論,去除軟硬鐵干擾提高精度是其設(shè)計(jì)難點(diǎn),最終依靠自校準(zhǔn)算法將其精度提高到2°以內(nèi)。 最后,以無創(chuàng)動(dòng)態(tài)血壓計(jì)和三軸數(shù)字指南針為基礎(chǔ),結(jié)合ARM嵌入式開發(fā)平臺(tái),設(shè)計(jì)了野外探險(xiǎn)救助信息監(jiān)測(cè)儀。在以S3C2440為核心處理器的嵌入式平臺(tái)上,完成了圖形化界面的設(shè)計(jì)、菜單的疊加及各個(gè)模塊之間實(shí)時(shí)數(shù)據(jù)的通信,并設(shè)計(jì)了數(shù)據(jù)傳輸格式與接口,為將來實(shí)現(xiàn)遠(yuǎn)程通信打下基礎(chǔ)。 系統(tǒng)實(shí)現(xiàn)了關(guān)鍵模塊的自主設(shè)計(jì),極大的降低了整體設(shè)計(jì)成本;采用了先進(jìn)的前端信號(hào)采集方案和合適的數(shù)字信號(hào)處理算法,保證了測(cè)量參數(shù)的精確度和實(shí)時(shí)性;選用了恰當(dāng)?shù)那度胧狡脚_(tái)做到了動(dòng)態(tài)數(shù)字化實(shí)時(shí)輸出且具有友善的人機(jī)交互界面;設(shè)計(jì)了完善的數(shù)據(jù)輸出格式和硬件接口,為將來進(jìn)一步實(shí)現(xiàn)無線傳輸,組建野外救助監(jiān)護(hù)網(wǎng)絡(luò)打下了良好的基礎(chǔ)。項(xiàng)目針對(duì)民用野外探險(xiǎn)監(jiān)護(hù)這一特定領(lǐng)域,無論是系統(tǒng)整體還是電子血壓計(jì)和數(shù)字指南針兩個(gè)獨(dú)立模塊都具有良好的應(yīng)用前景。
[Abstract]:With the improvement of people's living standard, the activities of field mountaineering and exploration are increasing gradually. With the frequent occurrence of accidents in the field, there is an urgent need for a kind of real-time physiological information for the wearer. Monitoring equipment for direction and attitude information to monitor and alert field explorers. In order to meet the market demand of field exploration and rescue information collection, this paper studies the key information collection technology of field exploration rescue, and designs a new dynamic electronic sphygmomanometer and a digital compass which can be used in the field exploration environment. Taking both as the core, the information monitor of field exploration and rescue is built simply. Firstly, based on the background of field information monitoring and telemedicine monitoring, this paper introduces the development status and background of field information monitoring technology at home and abroad, and discusses the necessity and practical significance of studying field exploration information collection technology. Secondly, the realization of key signal acquisition technology is introduced in detail, and after comparing the merits and demerits of each scheme, a key signal acquisition scheme is put forward in this paper. For this subject, the key signals to be collected include blood pressure, heart rate, movement direction and posture. The signals of blood pressure and heart rate belong to the physiological signals of human body, which are obtained by collecting body surface signals through calculation and realized by dynamic electronic sphygmomanometer. The direction and attitude of motion are mainly realized by the monitoring module of direction and attitude information, that is, the high precision electronic compass. Dynamic electronic sphygmomanometer is designed based on pulse wave velocity measurement of blood pressure, while high precision digital compass is based on geomagnetic navigation theory. Then, the software and hardware design process of dynamic sphygmomanometer and digital compass are described. The stable acquisition of pulse wave signal and the calculation of signal phase difference are the main difficulties in the design of dynamic sphygmomanometer. After comparing all kinds of varistor materials, the PVDF membrane is used as the pulse signal acquisition material. Based on the geomagnetic navigation theory, it is difficult to improve the precision of the compass based on the geomagnetic navigation theory. Finally, the precision of the compass is improved to less than 2 擄by the self-calibration algorithm. Finally, based on a non-invasive dynamic sphygmomanometer and a three-axis digital compass, a field adventure rescue information monitor is designed based on ARM embedded development platform. On the embedded platform with S3C2440 as the core processor, the design of graphical interface, the superposition of menu and the real-time data communication among various modules are completed, and the format and interface of data transmission are designed, which lays the foundation for the realization of remote communication in the future. The system realizes the independent design of the key module, greatly reduces the overall design cost, and adopts the advanced front-end signal acquisition scheme and the appropriate digital signal processing algorithm to ensure the accuracy and real-time performance of the measurement parameters. The proper embedded platform is chosen to achieve dynamic digital real-time output and friendly man-machine interface, and a perfect data output format and hardware interface are designed for further wireless transmission in the future. The establishment of field rescue and monitoring network has laid a good foundation. The project aims at the special field of civil field exploration monitoring. Both the whole system and the two independent modules of electronic sphygmomanometer and digital compass have good application prospects.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP274.2;TP368.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李希勝;于廣華;;各向異性磁阻傳感器在車輛探測(cè)中的應(yīng)用[J];北京科技大學(xué)學(xué)報(bào);2006年06期

2 徐克;周奇;韋云隆;;無創(chuàng)血壓測(cè)量[J];重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年01期

3 劉武發(fā),蔣蓁,龔振邦;基于MEMS加速度傳感器的雙軸傾角計(jì)及其應(yīng)用[J];傳感器技術(shù);2005年03期

4 徐金華;許江寧;張曉鋒;朱濤;;GPS/磁羅經(jīng)最優(yōu)組合導(dǎo)航應(yīng)用研究[J];彈箭與制導(dǎo)學(xué)報(bào);2006年S8期

5 關(guān)政軍;陳小鳳;;磁傳感器在航海上的應(yīng)用[J];大連海事大學(xué)學(xué)報(bào);2006年02期

6 錢德俊;張哲;胡晨;;NMEA0183協(xié)議解析[J];電子器件;2007年02期

7 陳忠義;質(zhì)子旋進(jìn)磁力儀[J];地震研究;1982年04期

8 焦學(xué)軍,房興業(yè);連續(xù)每搏血壓測(cè)量方法的研究進(jìn)展[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;2000年02期

9 李懿;羊彥;;基于DSP和MEMS的人體動(dòng)作識(shí)別系統(tǒng)[J];科學(xué)技術(shù)與工程;2011年02期

10 王曉春;登山與健康關(guān)系的調(diào)查研究[J];南京體育學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年03期

相關(guān)博士學(xué)位論文 前2條

1 李頂立;基于脈搏波的無創(chuàng)連續(xù)血壓測(cè)量方法研究[D];浙江大學(xué);2008年

2 徐戰(zhàn)亞;可移植嵌入式導(dǎo)航平臺(tái)關(guān)鍵技術(shù)研究[D];中國地質(zhì)大學(xué);2010年

相關(guān)碩士學(xué)位論文 前8條

1 王斌;地磁導(dǎo)航綜合檢測(cè)儀的實(shí)現(xiàn)及其精確校準(zhǔn)技術(shù)的研究[D];杭州電子科技大學(xué);2011年

2 陳清文;基于磁阻傳感器的載體姿態(tài)測(cè)量系統(tǒng)的設(shè)計(jì)[D];南京理工大學(xué);2004年

3 許臣蓉;基于DSP的數(shù)字濾波器設(shè)計(jì)[D];武漢理工大學(xué);2006年

4 宋麗梅;磁阻式電子羅盤的軟件集成設(shè)計(jì)[D];哈爾濱工程大學(xué);2007年

5 莫小鷗;基于PVDF壓力傳感器的車座人體應(yīng)力動(dòng)態(tài)監(jiān)測(cè)[D];昆明理工大學(xué);2008年

6 李志穎;基于脈搏波的無創(chuàng)血壓檢測(cè)樣機(jī)的研究與設(shè)計(jì)[D];吉林大學(xué);2009年

7 章力;基于ARM的遠(yuǎn)程生理監(jiān)護(hù)儀的設(shè)計(jì)與嵌入式低功耗策略的研究[D];東華大學(xué);2009年

8 李聲飛;基于WSN的穿戴式人體姿態(tài)與健康監(jiān)護(hù)系統(tǒng)的研制[D];重慶大學(xué);2010年



本文編號(hào):2191778

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2191778.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶48005***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com