野外探險(xiǎn)救助信息采集技術(shù)的研究與實(shí)現(xiàn)
[Abstract]:With the improvement of people's living standard, the activities of field mountaineering and exploration are increasing gradually. With the frequent occurrence of accidents in the field, there is an urgent need for a kind of real-time physiological information for the wearer. Monitoring equipment for direction and attitude information to monitor and alert field explorers. In order to meet the market demand of field exploration and rescue information collection, this paper studies the key information collection technology of field exploration rescue, and designs a new dynamic electronic sphygmomanometer and a digital compass which can be used in the field exploration environment. Taking both as the core, the information monitor of field exploration and rescue is built simply. Firstly, based on the background of field information monitoring and telemedicine monitoring, this paper introduces the development status and background of field information monitoring technology at home and abroad, and discusses the necessity and practical significance of studying field exploration information collection technology. Secondly, the realization of key signal acquisition technology is introduced in detail, and after comparing the merits and demerits of each scheme, a key signal acquisition scheme is put forward in this paper. For this subject, the key signals to be collected include blood pressure, heart rate, movement direction and posture. The signals of blood pressure and heart rate belong to the physiological signals of human body, which are obtained by collecting body surface signals through calculation and realized by dynamic electronic sphygmomanometer. The direction and attitude of motion are mainly realized by the monitoring module of direction and attitude information, that is, the high precision electronic compass. Dynamic electronic sphygmomanometer is designed based on pulse wave velocity measurement of blood pressure, while high precision digital compass is based on geomagnetic navigation theory. Then, the software and hardware design process of dynamic sphygmomanometer and digital compass are described. The stable acquisition of pulse wave signal and the calculation of signal phase difference are the main difficulties in the design of dynamic sphygmomanometer. After comparing all kinds of varistor materials, the PVDF membrane is used as the pulse signal acquisition material. Based on the geomagnetic navigation theory, it is difficult to improve the precision of the compass based on the geomagnetic navigation theory. Finally, the precision of the compass is improved to less than 2 擄by the self-calibration algorithm. Finally, based on a non-invasive dynamic sphygmomanometer and a three-axis digital compass, a field adventure rescue information monitor is designed based on ARM embedded development platform. On the embedded platform with S3C2440 as the core processor, the design of graphical interface, the superposition of menu and the real-time data communication among various modules are completed, and the format and interface of data transmission are designed, which lays the foundation for the realization of remote communication in the future. The system realizes the independent design of the key module, greatly reduces the overall design cost, and adopts the advanced front-end signal acquisition scheme and the appropriate digital signal processing algorithm to ensure the accuracy and real-time performance of the measurement parameters. The proper embedded platform is chosen to achieve dynamic digital real-time output and friendly man-machine interface, and a perfect data output format and hardware interface are designed for further wireless transmission in the future. The establishment of field rescue and monitoring network has laid a good foundation. The project aims at the special field of civil field exploration monitoring. Both the whole system and the two independent modules of electronic sphygmomanometer and digital compass have good application prospects.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP274.2;TP368.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李希勝;于廣華;;各向異性磁阻傳感器在車輛探測(cè)中的應(yīng)用[J];北京科技大學(xué)學(xué)報(bào);2006年06期
2 徐克;周奇;韋云隆;;無創(chuàng)血壓測(cè)量[J];重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年01期
3 劉武發(fā),蔣蓁,龔振邦;基于MEMS加速度傳感器的雙軸傾角計(jì)及其應(yīng)用[J];傳感器技術(shù);2005年03期
4 徐金華;許江寧;張曉鋒;朱濤;;GPS/磁羅經(jīng)最優(yōu)組合導(dǎo)航應(yīng)用研究[J];彈箭與制導(dǎo)學(xué)報(bào);2006年S8期
5 關(guān)政軍;陳小鳳;;磁傳感器在航海上的應(yīng)用[J];大連海事大學(xué)學(xué)報(bào);2006年02期
6 錢德俊;張哲;胡晨;;NMEA0183協(xié)議解析[J];電子器件;2007年02期
7 陳忠義;質(zhì)子旋進(jìn)磁力儀[J];地震研究;1982年04期
8 焦學(xué)軍,房興業(yè);連續(xù)每搏血壓測(cè)量方法的研究進(jìn)展[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;2000年02期
9 李懿;羊彥;;基于DSP和MEMS的人體動(dòng)作識(shí)別系統(tǒng)[J];科學(xué)技術(shù)與工程;2011年02期
10 王曉春;登山與健康關(guān)系的調(diào)查研究[J];南京體育學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年03期
相關(guān)博士學(xué)位論文 前2條
1 李頂立;基于脈搏波的無創(chuàng)連續(xù)血壓測(cè)量方法研究[D];浙江大學(xué);2008年
2 徐戰(zhàn)亞;可移植嵌入式導(dǎo)航平臺(tái)關(guān)鍵技術(shù)研究[D];中國地質(zhì)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 王斌;地磁導(dǎo)航綜合檢測(cè)儀的實(shí)現(xiàn)及其精確校準(zhǔn)技術(shù)的研究[D];杭州電子科技大學(xué);2011年
2 陳清文;基于磁阻傳感器的載體姿態(tài)測(cè)量系統(tǒng)的設(shè)計(jì)[D];南京理工大學(xué);2004年
3 許臣蓉;基于DSP的數(shù)字濾波器設(shè)計(jì)[D];武漢理工大學(xué);2006年
4 宋麗梅;磁阻式電子羅盤的軟件集成設(shè)計(jì)[D];哈爾濱工程大學(xué);2007年
5 莫小鷗;基于PVDF壓力傳感器的車座人體應(yīng)力動(dòng)態(tài)監(jiān)測(cè)[D];昆明理工大學(xué);2008年
6 李志穎;基于脈搏波的無創(chuàng)血壓檢測(cè)樣機(jī)的研究與設(shè)計(jì)[D];吉林大學(xué);2009年
7 章力;基于ARM的遠(yuǎn)程生理監(jiān)護(hù)儀的設(shè)計(jì)與嵌入式低功耗策略的研究[D];東華大學(xué);2009年
8 李聲飛;基于WSN的穿戴式人體姿態(tài)與健康監(jiān)護(hù)系統(tǒng)的研制[D];重慶大學(xué);2010年
本文編號(hào):2191778
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2191778.html