基于嵌入式系統(tǒng)人臉識(shí)別方法的研究
[Abstract]:With the development of society and the urgent requirement of rapid and effective automatic authentication, biometric identification technology has been developed rapidly in recent decades. As one of the biometric techniques, face recognition is a hot topic in the field of pattern recognition. Face recognition is based on the existing face sample set, using certain algorithm to extract face visual feature information from face image, using image processing and pattern recognition technology to obtain and analyze one or more human faces from image or video. And then extract effective recognition information from it to automatically identify the identity of the person to be identified in the image, which involves computer graphics, computer vision, pattern recognition, machine learning, perceptual science, artificial intelligence, Computer intelligence and other multi-disciplinary technology. Compared with other traditional biometrics, face recognition has the advantages of easy collection, convenience and friendly interaction, and has been gradually accepted by the public, such as intelligent man-machine interface, image retrieval, video processing, etc. Safety and other fields have extremely wide application value. Broadly speaking, face recognition has two main parts: face detection and face recognition. In the construction of face recognition system, face recognition technology includes face image acquisition, face and human eye location, face image recognition preprocessing, feature extraction, identity identification and so on. In this paper, face recognition is studied in a narrow sense after the study of human eye location, face image preprocessing, feature extraction, identity recognition judgment. This paper mainly introduces the research background and significance of face recognition at home and abroad, the theory and algorithm of face recognition and image processing algorithm. Then the embedded system is designed, the Samsung S3C2440arm microprocessor is chosen as the hardware base, and the embedded operating system, such as transplanting Linux kernel to U-boot, is built. Finally, principal component analysis (PCA) algorithm is used to extract face features, Adaboost algorithm is used to train the sample set, and Euclidean distance measurement feature matching is used to test the research results.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP391.41;TP368.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李登輝;徐亞寧;王巖紅;;人臉識(shí)別中圖像預(yù)處理方法的研究[J];大眾科技;2011年04期
2 李敏躍 ,李威龍;人臉識(shí)別系統(tǒng)的研究與實(shí)現(xiàn)——圖像獲取、定位、特征提取和特征識(shí)別[J];廣西工學(xué)院學(xué)報(bào);2005年S3期
3 黃志武;潘俊杉;;基于嵌入式LINUX驅(qū)動(dòng)程序開(kāi)發(fā)的研究[J];電腦與電信;2007年06期
4 趙英男;孟憲權(quán);徐勇;侯春明;;光照變化條件下的人臉識(shí)別預(yù)處理[J];吉首大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
5 薛源;李艷萍;;人臉識(shí)別技術(shù)的探討和研究[J];機(jī)械管理開(kāi)發(fā);2010年05期
6 覃志祥;丁立新;簡(jiǎn)國(guó)強(qiáng);秦前清;李元香;;一種改進(jìn)的線性判別分析法在人臉識(shí)別中的應(yīng)用[J];計(jì)算機(jī)工程;2006年04期
7 張君昌;張譯;;基于改進(jìn)AdaBoost算法的人臉檢測(cè)[J];計(jì)算機(jī)仿真;2011年07期
8 吳巾一;周德龍;;人臉識(shí)別方法綜述[J];計(jì)算機(jī)應(yīng)用研究;2009年09期
9 田印中;董志學(xué);黃建偉;;基于PCA的人臉識(shí)別算法研究及實(shí)現(xiàn)[J];內(nèi)蒙古科技與經(jīng)濟(jì);2010年06期
10 丁日峰;丁輝;;嵌入式人臉檢測(cè)系統(tǒng)開(kāi)發(fā)研究[J];首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S1期
相關(guān)碩士學(xué)位論文 前7條
1 崔浩;基于S3C2440的智能評(píng)分系統(tǒng)設(shè)計(jì)[D];武漢科技大學(xué);2011年
2 王彥堂;基于ARM的嵌入式Linux系統(tǒng)研究與應(yīng)用[D];山東大學(xué);2007年
3 阮揆;人臉識(shí)別技術(shù)的研究與應(yīng)用[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
4 塔娜;基于ARM的人臉識(shí)別系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];東北師范大學(xué);2009年
5 周輝;基于嵌入式Linux的人臉識(shí)別系統(tǒng)的研究[D];長(zhǎng)安大學(xué);2009年
6 戴棟;基于ARM9的特定人臉識(shí)別系統(tǒng)[D];中南大學(xué);2009年
7 饒文高;基于ARM的嵌入式數(shù)字圖像處理方法研究[D];黑龍江大學(xué);2010年
本文編號(hào):2125782
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2125782.html