SiN_x摻雜SbTe相變存儲材料研究
發(fā)布時間:2018-06-24 07:23
本文選題:相變存儲器 + SiNx摻雜SbTe; 參考:《上海交通大學》2012年碩士論文
【摘要】:近幾年來隨著消費電子市場的快速增長,存儲器的市場越來越大,目前應用最廣泛的不揮發(fā)存儲器是基于浮柵技術的閃存。然而,由于其自身物理機制上的限制,閃存單元尺寸的進一步縮小遇到了很多的技術瓶頸。相變存儲器(Phase Change Random Access Memory,簡稱PRAM)因為具有存儲單元尺寸小、非揮發(fā)性、循環(huán)壽命長、功耗低、讀/寫速度快以及和現有的CMOS工藝兼容等優(yōu)點,被認為是最有可能取代閃存成為未來可通用的新一代存儲器技術。當前,在PRAM中廣泛采用的相變材料是Ge-Sb-Te(GST)薄膜,但其存在一些需要改善的問題,如RESET電流較大,高溫下的數據保存壽命有待提高等問題,難以滿足未來不揮發(fā)存儲器對低功耗,數據穩(wěn)定性等的要求。對此,人們研究了在Sb_2Te_3中摻雜Si元素從而形成的SST材料。SST材料具有更好的非晶態(tài)熱穩(wěn)定性,更高的晶態(tài)電阻率以及更低的熔化溫度,然而在結晶過程中會分離出Te晶相是SST材料的一個很大的問題,會對器件的穩(wěn)定性造成一定的影響。為了既能保留SST材料的優(yōu)勢,又要減弱Te晶相的產生,本論文嘗試對Sb2Te3中摻雜SiNx,主要進行了以下的研究: 1.制備不同濃度SiNx摻雜SbTe薄膜。利用XRD、TEM和原位恒溫退火等實驗研究薄膜成分、結構特性和電學性能。XRD和TEM結果表明,結晶后主要是Sb2Te3晶相,分布在SiNx材料中形成為一種納米復合材料,高電阻的SiNx可以作為微加熱器,并且此結構能夠提高晶態(tài)電阻率,從而有利于降低器件的RESET電流。原位恒溫退火實驗結果表明,隨著SiNx濃度的增加,SiNx-SbTe材料的晶化溫度升高,非晶態(tài)和晶態(tài)電阻率提高,數據保存能力大大提高。 2.制備基于SiNx-SbTe材料的相變存儲器件原型,研究其電學性能和轉變機理。該器件具有記憶開關特性,并且能夠實現SET和RESET操作。測試結果表明,基于5at.% SiNx-SbTe材料制備的器件具有記憶開關特性,可以在大小、脈沖寬度、下降沿寬度分別為2.2V-80ns-50ns的脈沖下實現SET操作,在4.2V-20ns-5ns的脈沖下實現RESET操作。
[Abstract]:In recent years, with the rapid growth of consumer electronics market, the market of memory is becoming larger and larger. At present, the most widely used non-volatile memory is flash memory based on floating gate technology. However, due to the limitations of its own physical mechanism, the further reduction of flash memory unit size encountered a lot of technical bottlenecks. Phase change Random Access memory (pram) has the advantages of small memory cell size, non-volatile, long cycle life, low power consumption, fast read / write speed and compatibility with existing CMOS processes. It is considered most likely to replace flash memory as a new generation of memory technology that can be used in the future. At present, the phase change material widely used in pram is Ge-Sb-Te (GST) thin film, but there are some problems that need to be improved, such as large RESET current, high temperature data storage life and so on, so it is difficult to meet the low power consumption of non-volatile memory in the future. Requirements for data stability, etc. In this regard, it has been studied that the SST material SST formed by doping Si in SbStu2Te3 has better amorphous thermal stability, higher crystalline resistivity and lower melting temperature. However, the separation of Te phase in the crystallization process is a major problem for SST materials, which will have a certain impact on the stability of the device. In order to preserve the advantages of SST materials and weaken the generation of Te crystal phase, the following researches have been done in this thesis: 1. In this thesis, the doping of SiNx in SB _ 2TE _ 3 is studied as follows: 1. SiNx doped SbTe thin films with different concentrations were prepared. The composition, structure and electrical properties of the films were investigated by XRDX TEM and in-situ isothermal annealing. XRD and TEM results showed that the crystalline phase was mainly Sb2Te3, which was distributed in Sinx material to form a kind of nanocomposite. The SiNx with high resistance can be used as a micro-heater, and the structure can increase the resistivity of the crystal state, thus reducing the RESET current of the device. The in-situ isothermal annealing results show that with the increase of Sinx concentration, the crystallization temperature of SiNx-SbTe increases, the resistivity of amorphous and crystalline states increases, and the data storage ability is greatly improved. 2. A phase change memory device prototype based on SiNx-SbTe was prepared and its electrical properties and transition mechanism were studied. The device has the characteristics of memory switch and can realize set and reset operation. The test results show that the device based on 5at.% SiNx-SbTe has memory switching characteristics, and can realize set operation at pulse size, pulse width and descent edge width of 2.2V-80ns-50ns, and RESET operation under 4.2V-20ns-5ns pulse.
【學位授予單位】:上海交通大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TP333
【參考文獻】
相關期刊論文 前2條
1 李穎_";劉明;龍世兵;劉琦;張森;王艷;左青云;王琴;胡媛;劉肅;;基于I-V特性的阻變存儲器的阻變機制研究[J];微納電子技術;2009年03期
2 尚也淳,劉忠立;MTJ MRAM的特性分析與設計[J];固體電子學研究與進展;2003年02期
,本文編號:2060582
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2060582.html