襟縫翼控制系統(tǒng)的設(shè)計(jì)及仿真
本文選題:襟縫翼 + 嵌入式; 參考:《北京交通大學(xué)》2012年碩士論文
【摘要】:在全人類的發(fā)展歷史中,早在遠(yuǎn)古時(shí)代,人們就幻想能夠像鳥兒那樣在天空自由的飛翔,馳騁于藍(lán)天白云之中。飛機(jī)是借助于空氣飛行的的裝置,飛機(jī)的襟縫翼便是位于飛機(jī)機(jī)翼上的一部分可以靈活轉(zhuǎn)動(dòng)的裝置,這樣就可以有效的增加飛機(jī)機(jī)翼的效率。 襟縫翼的控制一般都不是獨(dú)立的,而是附屬于飛機(jī)的其它控制系統(tǒng),對(duì)于襟縫翼的驅(qū)動(dòng)主要是液壓驅(qū)動(dòng);蛘呤呛(jiǎn)單的電氣控制。液壓驅(qū)動(dòng)襟翼會(huì)出現(xiàn)“剪刀差”現(xiàn)象,使系統(tǒng)復(fù)雜化。本文設(shè)計(jì)的襟縫翼控制系統(tǒng)是基于電機(jī)控制的。 本文首先介紹襟縫翼控制系統(tǒng)實(shí)現(xiàn)是硬件環(huán)境,應(yīng)用嵌入式開發(fā),在DSP芯片TMS320F2812上實(shí)現(xiàn),開發(fā)環(huán)境是CCS (Code Composer Studio)。本系統(tǒng)由翼面位置控制器、電機(jī)轉(zhuǎn)速控制器和接口數(shù)據(jù)處理等構(gòu)成。襟縫翼控制系統(tǒng)的接口方式應(yīng)用的是RS422(平衡電壓數(shù)字接口電路的電氣特性)標(biāo)準(zhǔn),系統(tǒng)的輸入數(shù)據(jù)來自采集編碼設(shè)備,經(jīng)襟縫翼控制系統(tǒng)處理后的數(shù)據(jù)發(fā)送給驅(qū)動(dòng)解碼設(shè)備。 在軟件實(shí)現(xiàn)方面,襟縫翼控制系統(tǒng)由C語(yǔ)言開發(fā),軟件系統(tǒng)由上電自檢、10ms定時(shí)中斷和RS422接收中斷組成。10ms定時(shí)中斷主要用來完成周期任務(wù),比如翼面位置控制器、電機(jī)轉(zhuǎn)速控制器對(duì)輸入數(shù)據(jù)的處理和定期輸出電機(jī)的輸入電壓;接收中斷主要用來接收數(shù)據(jù),只有當(dāng)有數(shù)據(jù)傳入的時(shí)候,才會(huì)調(diào)用相應(yīng)的接收函數(shù)。 本文設(shè)計(jì)的襟縫翼控制系統(tǒng),就是通過駕駛艙的操作桿,飛行員設(shè)置襟翼/縫翼的位置狀態(tài)(位置角度),并通過閉環(huán)反饋控制器控制襟翼和縫翼的運(yùn)動(dòng),使之達(dá)到目標(biāo)狀態(tài)。襟縫翼控制系統(tǒng),對(duì)于襟翼或縫翼的控制是相互獨(dú)立,且控制原理相同,實(shí)現(xiàn)對(duì)襟縫翼控制的智能化,并有利于以后對(duì)襟縫翼控制系統(tǒng)的擴(kuò)展,比如當(dāng)襟縫翼位置確定且長(zhǎng)時(shí)間不改變時(shí),可以讓CPU騰出時(shí)間檢測(cè)各個(gè)硬件模塊等。 本文的最后,運(yùn)用mat lab的simulink工具,對(duì)本文設(shè)計(jì)的襟縫翼控制系統(tǒng)進(jìn)行了仿真,從而來驗(yàn)證第一部分的理論,通過仿真結(jié)果,也可以反饋給第一部分,對(duì)第一部分進(jìn)行修改等。另外,本文還介紹了怎么用mat lab進(jìn)行數(shù)據(jù)擬合,這就使得,在實(shí)驗(yàn)條件允許的情況下,可以采集大量的飛機(jī)襟縫翼控制系統(tǒng)的相關(guān)數(shù)據(jù),找出規(guī)律或數(shù)學(xué)表達(dá)式,反過來指導(dǎo)和修改襟縫翼控制系統(tǒng)的相關(guān)參數(shù)和函數(shù)模型。這就使得本文所設(shè)計(jì)的襟縫翼控制系統(tǒng)具有了一定的實(shí)用性。
[Abstract]:In the development history of all mankind, as early as in ancient times, people fantasized that they could fly freely in the sky like birds, galloping in the blue sky and white clouds. Aircraft is the aid of air flight device, the flap-fin is located on the wing of the aircraft part of the device can be flexibly rotated, which can effectively increase the efficiency of the wing of the aircraft. The control of flapflange is not independent, but is attached to other control systems of aircraft. The drive of flapflange is mainly hydraulic drive. Or simple electrical control. Hydraulic-driven flap will appear "scissors difference" phenomenon, making the system complex. The design of the flap-fin control system in this paper is based on the motor control. This paper first introduces the realization of the flap-fin control system is a hardware environment, the application of embedded development, implemented on DSP chip TMS320F2812, the development environment is CCS Code Composer Studio. The system consists of wing position controller, motor speed controller and interface data processing. The interface mode of the slit wing control system is based on the RS422 (Electrical characteristics of balanced Voltage Digital Interface Circuit). The input data of the system come from the acquisition and coding equipment, and the data processed by the slit wing control system is sent to the driver decoding device. In the aspect of software realization, the flap-fin control system is developed by C language. The software system is composed of 10 Ms timing interrupt and 10 Ms RS422 receiving interrupt, which are mainly used to complete periodic tasks, such as wing position controller. The motor speed controller processes the input data and periodically outputs the input voltage of the motor, and the receiving interrupt is mainly used to receive the data, only when the data is passed in, the corresponding receiving function will be called. The flap-fin control system designed in this paper is to set the flap / slit position state (position angle) through the operating lever of the cockpit, and control the flap and slit motion through the closed-loop feedback controller to make it reach the target state. The flapflange control system is independent of each other for flap or slit wing control, and the control principle is the same. It realizes the intelligent control of the flapflange wing, and is conducive to the expansion of the flap-fin control system in the future. For example, when the position of the flapside is determined and not changed for a long time, the CPU can free time to detect the various hardware modules and so on. At the end of this paper, the flap-fin control system designed in this paper is simulated by using the simulink tool of mat lab to verify the theory of the first part. Through the simulation results, it can also be fed back to the first part, and the first part can be modified and so on. In addition, this paper also introduces how to use mat lab to carry out data fitting, which makes it possible to collect a large number of relevant data of aircraft flap-wing control system and find out the law or mathematical expression when the experimental conditions permit. In turn, it guides and modifies the relevant parameters and function models of the flapside control system. This makes the design of the flap-fin control system has a certain practicability.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:V227.6;TP273;TP368.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于水生;;DSP芯片介紹及其選型[J];單片機(jī)與嵌入式系統(tǒng)應(yīng)用;2006年04期
2 馮元珍;屠小明;羅建平;;MATLAB軟件在曲線擬合中的應(yīng)用[J];福建電腦;2007年03期
3 范立欽;林國(guó)鋒;;機(jī)動(dòng)襟翼在實(shí)現(xiàn)直接升力控制中的應(yīng)用研究[J];飛行力學(xué);1991年04期
4 忻鼎定,余光志,袁禮;大后掠翼大迎角定常與非定常俯仰氣動(dòng)特性及其控制[J];航空學(xué)報(bào);1997年02期
5 高春鳴,黃園媛,陳火旺;基于CCS的軟件規(guī)范描述及實(shí)例研究[J];計(jì)算機(jī)工程與應(yīng)用;2005年23期
6 嚴(yán)少波;黃建國(guó);;飛機(jī)后緣襟翼運(yùn)動(dòng)同步性設(shè)計(jì)和計(jì)算[J];民用飛機(jī)設(shè)計(jì)與研究;2011年01期
7 黃智偉;幾款通信用DSP芯片簡(jiǎn)介[J];世界電子元器件;1999年02期
8 應(yīng)啟珩;數(shù)字信號(hào)處理器第二講 實(shí)時(shí)DSP系統(tǒng)設(shè)計(jì)開發(fā)流程和DSP處理器開發(fā)工具簡(jiǎn)介[J];世界電子元器件;2005年02期
9 付艷茹;;基于MATLAB曲線擬合的應(yīng)用研究[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
10 程翔,韓昌彩,袁東風(fēng);在初步使用DSP的CCS系統(tǒng)時(shí)所遇問題的解答[J];山東電子;2003年02期
相關(guān)碩士學(xué)位論文 前6條
1 鄭云;自適應(yīng)機(jī)翼構(gòu)型的選擇方法研究[D];西北工業(yè)大學(xué);2007年
2 張弓;多段翼型縫道流動(dòng)的相似準(zhǔn)則研究[D];西北工業(yè)大學(xué);2007年
3 周傳祥;基于DSP的導(dǎo)航/飛控嵌入式系統(tǒng)設(shè)計(jì)[D];西北工業(yè)大學(xué);2007年
4 包敦永;民機(jī)縫翼機(jī)構(gòu)可靠性若干問題分析與試驗(yàn)方法研究[D];南京航空航天大學(xué);2008年
5 張巍;基于ARM9的嵌入式汽車導(dǎo)航與防盜系統(tǒng)的設(shè)計(jì)[D];大連海事大學(xué);2009年
6 王承啟;嵌入式系統(tǒng)設(shè)計(jì)方法研究與嵌入式避障機(jī)器人的實(shí)現(xiàn)[D];北京交通大學(xué);2009年
,本文編號(hào):1951552
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1951552.html