高性能有機(jī)晶體管存儲(chǔ)器的制備及其空氣穩(wěn)定性研究
發(fā)布時(shí)間:2018-04-21 03:40
本文選題:關(guān)鍵字 + 有機(jī)晶體管存儲(chǔ)器; 參考:《蘇州大學(xué)》2013年碩士論文
【摘要】:隨著有機(jī)電子學(xué)研究的進(jìn)步,基于有機(jī)材料的晶體管存儲(chǔ)器已經(jīng)成為有機(jī)電子領(lǐng)域的研究熱點(diǎn)之一。有機(jī)晶體管存儲(chǔ)器是利用有機(jī)材料代替?zhèn)鹘y(tǒng)的無(wú)機(jī)半導(dǎo)體,絕緣體材料制成,因此有機(jī)存儲(chǔ)器較傳統(tǒng)的無(wú)機(jī)存儲(chǔ)器具有以下的優(yōu)勢(shì);一方面有機(jī)晶體管存儲(chǔ)器可以制備在柔性的襯底上,適用于未來(lái)可卷曲電子設(shè)備的集成中。另一方面有機(jī)晶體管存儲(chǔ)器可以采用簡(jiǎn)單的,低成本的溶液旋涂,打印等方法制備。 近二十年來(lái),有機(jī)晶體管存儲(chǔ)器的研究取得了明顯進(jìn)展,為了適應(yīng)未來(lái)應(yīng)用的需求,提高有機(jī)晶體管存儲(chǔ)器器件性能有重要意義。衡量有機(jī)晶體管存儲(chǔ)器工作性能優(yōu)異的參數(shù)主要是存儲(chǔ)保持性,有機(jī)半導(dǎo)體遷移率,存儲(chǔ)窗口和空氣中操作穩(wěn)定性。因此本論文將研究影響有機(jī)晶體管存儲(chǔ)器保持性,,有機(jī)半導(dǎo)體遷移率,存儲(chǔ)窗口和空氣穩(wěn)定性的因素,并提出優(yōu)化方案。實(shí)驗(yàn)中采用探針臺(tái)和4200-SCS型半導(dǎo)體特性分析系統(tǒng)進(jìn)行器件性能的測(cè)試與分析。利用原子力顯微鏡(AFM)和透射電子顯微鏡(TEM)研究薄膜形貌。 對(duì)于存儲(chǔ)器保持性,有機(jī)半導(dǎo)體遷移率,存儲(chǔ)窗口的研究,我們發(fā)現(xiàn)并報(bào)道了隧穿絕緣層薄膜形貌對(duì)這三方面起著決定性的影響。隧穿絕緣層薄膜形貌較差時(shí),對(duì)金屬顆粒的覆蓋率就會(huì)較低,因此電荷在金屬顆粒和有機(jī)半導(dǎo)體之間的傳輸便非常容易,導(dǎo)致存儲(chǔ)保持性較差,窗口虛大卻不穩(wěn)定,有機(jī)半導(dǎo)體的生長(zhǎng)也呈現(xiàn)無(wú)序。通過(guò)熱退火改善隧穿絕緣層薄膜的形貌,使其對(duì)金屬顆粒覆蓋率顯著提高,電荷在金屬顆粒和有機(jī)半導(dǎo)體之間的傳輸就變成正常的隧穿過(guò)程,器件的保持性能得到明顯的提高,有機(jī)半導(dǎo)體薄膜也因生長(zhǎng)界面的改善而呈現(xiàn)出有序良性的薄膜形貌且體現(xiàn)較高的遷移率,并擁有可觀穩(wěn)定的存儲(chǔ)窗口。該工作中,我們系統(tǒng)研究了不同退火條件下產(chǎn)生的隧穿絕緣層薄膜的形貌,并測(cè)試了相應(yīng)的存儲(chǔ)器性能,發(fā)現(xiàn)隧穿絕緣層薄膜對(duì)金屬顆粒覆蓋率的高低直接決定了存儲(chǔ)器性能,并提出了熱退火是提高隧穿絕緣層薄膜對(duì)金屬顆粒覆蓋率,制備高性能有機(jī)晶體管存儲(chǔ)器的有效途徑。 關(guān)于有機(jī)晶體管存儲(chǔ)器在空氣中操作穩(wěn)定性的研究,我們報(bào)道了器件在空氣中操作后失效的現(xiàn)象并研究了失效的物理機(jī)理。研究發(fā)現(xiàn)空氣中的氧氣是導(dǎo)致器件存儲(chǔ)性能衰退的成分。氧分子因其較強(qiáng)的電負(fù)性,很容易得到有機(jī)小分子π體系中的電子,產(chǎn)生P型摻雜效應(yīng),引入了大量的電子陷阱能級(jí),使得電子不能注入到有機(jī)半導(dǎo)體和隧穿絕緣層界面,導(dǎo)致存儲(chǔ)性能失效。這項(xiàng)工作說(shuō)明了有機(jī)半導(dǎo)體材料的空氣穩(wěn)定性直接決定了存儲(chǔ)器件的空氣操作穩(wěn)定性,并闡明了衰退的物理機(jī)制。 本論文的研究通過(guò)實(shí)驗(yàn)分析指出了隧穿絕緣層薄膜形貌是決定有機(jī)晶體管存儲(chǔ)器性能的重要因素,為制備高性能有機(jī)晶體管存儲(chǔ)器件指出明確的途徑,并展示了通過(guò)優(yōu)化方案制備的有機(jī)晶體管存儲(chǔ)器的優(yōu)異性能。此外本文還提出了有機(jī)半導(dǎo)體空氣穩(wěn)定性對(duì)有機(jī)晶體管存儲(chǔ)器空氣穩(wěn)定性的重要性,指出合成新型空氣穩(wěn)定的有機(jī)半導(dǎo)體或者引入器件封裝處理是提高器件空氣穩(wěn)定性的有效途徑,而且指出能夠?qū)崿F(xiàn)有機(jī)晶體管存儲(chǔ)器空氣操作穩(wěn)定的有機(jī)半導(dǎo)體材料,不僅僅是要具備傳統(tǒng)意義的多子傳輸空氣穩(wěn)定同時(shí)也要具備少子的傳輸空氣穩(wěn)定,為合成新型空氣穩(wěn)定有機(jī)半導(dǎo)體材料提出了指導(dǎo)方向。這些都對(duì)有機(jī)晶體管存儲(chǔ)器走向未來(lái)有機(jī)電子學(xué)的應(yīng)用有重要意義。
[Abstract]:With the progress in the research of organic electronics, the transistor memory based on organic materials has become one of the hotspots in the field of organic electronics. Organic transistor memory is made of organic materials instead of traditional inorganic semiconductors and insulators, so organic memory has the following advantages over traditional inorganic memory. On the one hand, organic transistor memory can be prepared on flexible substrates and suitable for the integration of curly electronic devices in the future. On the other hand, the organic transistor memory can be prepared by simple, low cost solution spin coating, printing and other methods.
In the last twenty years, the research of organic transistor memory has made great progress. In order to meet the needs of future applications, it is of great significance to improve the performance of organic transistor memory devices. The main parameters to measure the excellent performance of organic transistor memory are storage retention, mobility of organic semiconductors, storage windows and air operation. Therefore, this paper will study the factors that affect the retention of organic transistor memory, the mobility of organic semiconductors, the storage window and the stability of the air, and propose an optimization scheme. In the experiment, the device performance test and analysis are carried out by the probe table and the 4200-SCS type semiconductor characteristic analysis system. The atomic force microscope (AFM) and the atomic force microscope (AFM) are used in the experiment. The morphology of the film was studied by transmission electron microscopy (TEM).
For the retention of memory, the mobility of organic semiconductors, and the storage window, we found and reported that the morphology of the tunneling insulating film has a decisive influence on these three aspects. When the morphology of the tunneling insulating film is poor, the coverage of the metal particles will be lower, because the charge is transmitted between the metal particles and the organic semiconductors. It is very easy to degenerate, resulting in poor storage retention, large but unstable windows and unordered growth of organic semiconductors. Through thermal annealing, the morphology of the tunneling film is improved, the coverage of metal particles is increased significantly, and the transfer of charge between metal particles and organic semiconductors becomes a normal tunneling process, and the device is a normal tunneling process. In this work, we systematically studied the morphology of the tunnelling insulating film produced under different annealing conditions and tested the phase. It is found that the thermal annealing is an effective way to improve the coverage of the metal particles in the insulating layer of the tunnel and to prepare the high performance organic transistor memory.
In the study of the operational stability of organic transistor memory in the air, we report the phenomenon of failure after operation in the air and study the physical mechanism of the failure. It is found that oxygen in the air is a component of the deterioration of the device's storage performance. Oxygen molecules are easily obtained by their strong electronegativity. The electron in the system produces P type doping effect, which introduces a large number of electron trap energy levels, which can not be injected into the interface between the organic semiconductor and the tunneling insulating layer, causing the failure of the storage performance. This work shows that the air stability of the organic semiconductor materials directly determines the stability of the air operation of the storage devices and clarifies the decline of the air operation. The physical mechanism of retreating.
The research of this paper shows that the film morphology of the tunneling insulating layer is an important factor in determining the performance of the organic transistor memory. It is a clear way for the preparation of high performance organic transistor memory, and shows the excellent performance of the organic transistor storage device prepared by the optimization scheme. The importance of the air stability of organic semiconductors to the air stability of organic transistor memory. It is pointed out that the synthesis of new air stabilized organic semiconductors or the introduction of device packaging is an effective way to improve the air stability of the devices, and points out the organic semiconductor materials that can achieve the stable air operation of the organic transistor storage and storage devices. It is of great significance to the application of organic transistor memory to the future organic electronics.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP333
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王宏;彭應(yīng)全;姬濯宇;劉明;商立偉;劉興華;;基于有機(jī)場(chǎng)效應(yīng)晶體管的非揮發(fā)性存儲(chǔ)器研究進(jìn)展[J];科學(xué)通報(bào);2010年33期
本文編號(hào):1780804
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1780804.html
最近更新
教材專著