天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 計算機論文 >

云計算平臺中的能耗管理方法

發(fā)布時間:2018-04-10 14:20

  本文選題:云計算 + 能耗模型; 參考:《南京郵電大學(xué)》2013年碩士論文


【摘要】:高能耗是云計算系統(tǒng)的一個主要問題,且隨著近年來云計算規(guī)模的日益擴大,其能耗開銷也愈加嚴(yán)重。本文針對云計算系統(tǒng)中的空閑和奢侈能耗,以動態(tài)電源管理及資源調(diào)度為研究內(nèi)容,以節(jié)能為主要研究目標(biāo),主要作了以下四個方面的工作: (1)總結(jié)了國內(nèi)外節(jié)能技術(shù)的研究現(xiàn)狀,重點闡述了云計算的相關(guān)技術(shù)、現(xiàn)有的動態(tài)電源管理策略及云環(huán)境下的資源調(diào)度算法。 (2)本文充分考慮資源在休眠、空閑、工作和轉(zhuǎn)換等不同狀態(tài)下的多種能耗開銷,提出一種基于不同狀態(tài)的能耗估算模型(Energy Consumption Estimation Model based on DifferentStates,ECEMDS),并且用多功能計量插座對其進(jìn)行驗證。 (3)針對云計算系統(tǒng)中空閑能耗,本文基于指數(shù)平均算法,提出了一種自適應(yīng)的空閑時間預(yù)測策略。該策略引入了自適應(yīng)權(quán)值調(diào)節(jié)因子,動態(tài)調(diào)節(jié)歷史空閑時間對預(yù)測空閑時間的影響,同時結(jié)合分段滑動窗口的思想,將滑動窗口內(nèi)的空閑時間分為長、中、短三類,,取每類個數(shù)最多的空閑時間的平均值作為指數(shù)平均算法的實際空閑時間值。該策略通過對下一段空閑時間的預(yù)測,決定是否要切換物理主機的狀態(tài)以降低空閑能耗。實驗結(jié)果說明本文提出的策略預(yù)測準(zhǔn)確率較高,系統(tǒng)響應(yīng)時間少,節(jié)能效果好。 (4)本文針對奢侈能耗,提出一種云環(huán)境下節(jié)能的資源調(diào)度算法。首先,對云環(huán)境中的資源調(diào)度進(jìn)行建模。接著,提出一種基于改進(jìn)Min-Min算法的最小能耗資源調(diào)度算法Min-Energy,在滿足云任務(wù)QoS需求的基礎(chǔ)上,以云環(huán)境下每個任務(wù)的能耗最小為目標(biāo)調(diào)度資源。算法按照優(yōu)先級對任務(wù)排序,然后估算每個任務(wù)在各個資源上的能耗總和,選擇每個任務(wù)的最小能耗對應(yīng)的資源進(jìn)行調(diào)度。在CloudSim平臺的仿真結(jié)果表明,Min-Energy算法在完成時間和能量消耗方面均具有較好的性能,能夠達(dá)到節(jié)能的目的。
[Abstract]:High energy consumption is a major problem in cloud computing systems, and with the increasing scale of cloud computing in recent years, its energy consumption is becoming more and more serious.Aiming at the idle and extravagant energy consumption in cloud computing system, this paper takes dynamic power management and resource scheduling as the research content, and takes energy conservation as the main research goal, mainly doing the following four aspects of work:This paper summarizes the research status of energy saving technology at home and abroad, and focuses on the related technologies of cloud computing, the existing dynamic power management strategy and resource scheduling algorithm in cloud environment.In this paper, energy Consumption Estimation Model based on difference states is proposed and verified by multifunctional metering sockets, considering the energy cost of resources in different states, such as dormancy, idle, work and conversion. The energy consumption estimation model based on different states is presented in this paper.Aiming at the idle energy consumption in cloud computing system, an adaptive idle time prediction strategy based on exponential average algorithm is proposed in this paper.The strategy introduces the adaptive weight adjustment factor, dynamically adjusts the influence of the historical idle time on the prediction of idle time, and combines the idea of piecewise sliding window, divides the idle time in the sliding window into three categories: long, medium and short.The average of the idle time with the largest number of each class is taken as the actual idle time value of the exponential average algorithm.By predicting the next idle time, the strategy determines whether to switch the state of the physical host to reduce idle energy consumption.The experimental results show that the strategy proposed in this paper has higher prediction accuracy, less system response time and better energy saving effect.In this paper, a resource scheduling algorithm for energy saving in cloud environment is proposed for luxury energy consumption.Firstly, resource scheduling in cloud environment is modeled.Then, a Min-Energy scheduling algorithm based on improved Min-Min algorithm is proposed. On the basis of satisfying the QoS requirements of cloud tasks, the minimum energy consumption of each task in the cloud environment is taken as the target.The algorithm sorts the tasks according to the priority, then estimates the total energy consumption of each task on each resource, and selects the resources corresponding to the minimum energy consumption of each task to schedule.The simulation results on the CloudSim platform show that the Min-Energy algorithm has better performance in terms of completion time and energy consumption, and can achieve the purpose of energy saving.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鐘偉軍,劉明業(yè);基于灰色模型的動態(tài)功率管理空閑預(yù)測算法[J];北京理工大學(xué)學(xué)報;2005年11期

2 谷波;李茹;劉開瑛;;采用預(yù)測策略的Earley算法[J];計算機科學(xué);2010年01期

3 何可佳;;基于概率的自適應(yīng)學(xué)習(xí)預(yù)測策略[J];計算機工程;2010年10期

4 張水平;鄔海艷;;基于元胞自動機遺傳算法的云資源調(diào)度[J];計算機工程;2012年11期

5 楊燦,徐重陽,劉政林;VOD系統(tǒng)批處理調(diào)度策略優(yōu)化研究[J];計算機學(xué)報;2002年11期

6 郭兵;沈艷;邵子立;;綠色計算的重定義與若干探討[J];計算機學(xué)報;2009年12期

7 張宇翔;張宏科;;一種層次結(jié)構(gòu)化P2P網(wǎng)絡(luò)中的負(fù)載均衡方法[J];計算機學(xué)報;2010年09期

8 林闖;田源;姚敏;;綠色網(wǎng)絡(luò)和綠色評價:節(jié)能機制、模型和評價[J];計算機學(xué)報;2011年04期

9 卜愛國;王炯;;基于MA(q)模型的動態(tài)電源管理預(yù)測策略[J];計算機應(yīng)用研究;2011年07期

10 錢瓊芬;李春林;張小慶;李臘元;;云數(shù)據(jù)中心虛擬資源管理研究綜述[J];計算機應(yīng)用研究;2012年07期



本文編號:1731564

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1731564.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶249c0***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com