DNA自組裝邏輯運(yùn)算模型
本文關(guān)鍵詞: DNA計(jì)算 邏輯運(yùn)算 自組裝模型 并行計(jì)算 出處:《電子科技大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,隨著電子計(jì)算機(jī)不斷發(fā)展,其運(yùn)算能力得到極大的發(fā)展,在科學(xué)研究和工業(yè)領(lǐng)域中扮演越來越重要的作用。然而隨著電子計(jì)算機(jī)的發(fā)展,其所面臨的量子力學(xué)瓶頸和串行運(yùn)行方式的缺陷也日漸凸顯。發(fā)展新型計(jì)算機(jī)的需求日漸迫切,DNA計(jì)算機(jī)以其低功耗、高儲(chǔ)存和高并行性等優(yōu)點(diǎn)從眾多理論模型中脫穎而出。在Aldeman于1994年成功使用DNA計(jì)算實(shí)際解決了一個(gè)復(fù)雜計(jì)算問題以后,DNA計(jì)算一直是科學(xué)界研究的熱點(diǎn)。 雖然DNA計(jì)算相比傳統(tǒng)電子計(jì)算具有諸多優(yōu)點(diǎn)并且近年來取得了長足的進(jìn)步,但仍處于理論研究階段。DNA計(jì)算要實(shí)用化仍要解決很多實(shí)際困難,如何將DNA計(jì)算實(shí)用化,是急需解決的問題。電子計(jì)算經(jīng)過多年的發(fā)展已相當(dāng)成熟,DNA計(jì)算通過模仿電子計(jì)算以達(dá)到實(shí)用化是可行的,在模仿電子計(jì)算的同時(shí)也應(yīng)該保持DNA計(jì)算的原有的優(yōu)點(diǎn)。邏輯運(yùn)算作為電子運(yùn)算中最為重要的運(yùn)算,是電子計(jì)算的基石。目前所存在的邏輯運(yùn)算模型,更多的是停留在理論上,不能夠在實(shí)驗(yàn)室完成。我們嘗試構(gòu)建一個(gè)在較簡單的實(shí)驗(yàn)條件下能夠完成的DNA計(jì)算邏輯運(yùn)算模型,為DNA計(jì)算的實(shí)用化做出有益探索。我們首次構(gòu)建并驗(yàn)證了可在較簡單實(shí)驗(yàn)條件下完成的DNA邏輯運(yùn)算模型。 為了能夠在較簡單的實(shí)驗(yàn)條件下完成邏輯運(yùn)算,我們未采用測(cè)序、熒光等過于耗時(shí)或難于構(gòu)建的檢測(cè)手段,而采用DNA分子的長度作為輸出,通過電泳作為檢測(cè)手段判斷體系中是否存在特定長度的分子,這樣能夠經(jīng)濟(jì)快捷的檢測(cè)結(jié)果。在參考眾多的經(jīng)典模型,如粘貼模型、剪切模型等后,構(gòu)建了兩個(gè)邏輯運(yùn)算模型。首先是基于環(huán)狀DNA分子的邏輯運(yùn)算模型。該模型利用環(huán)狀分子完成邏輯運(yùn)算,將特定的DNA內(nèi)切酶作為邏輯運(yùn)算的輸入,,以環(huán)狀DNA分子作為邏輯運(yùn)算的運(yùn)算分子,以最后體系中是否存在特定長度的DNA分子作為輸出。該模型具有簡單實(shí)用、易于實(shí)現(xiàn)的特點(diǎn),能夠在較短時(shí)間、較低成本的情況下實(shí)現(xiàn)邏輯運(yùn)算。但由于環(huán)狀分子不易合成且計(jì)算不夠自動(dòng)化,我們提出了基于自組裝的DNA邏輯運(yùn)算模型。利用DNA分子互補(bǔ)配對(duì)的特點(diǎn),將帶有互補(bǔ)缺口的DNA雙鏈分子作為輸入,將特定的DNA內(nèi)切酶作為運(yùn)算分子,進(jìn)一步提升了DNA運(yùn)算的可操作性。同時(shí)我們還進(jìn)一步改進(jìn)了我們的模型,使其能夠進(jìn)行多個(gè)邏輯運(yùn)算并行,充分體現(xiàn)了DNA計(jì)算高并行性的優(yōu)勢(shì)。 最后,本文就模型的特點(diǎn)和存在的不足做出了總結(jié),同時(shí)對(duì)未來研究的方向進(jìn)行了展望。
[Abstract]:In recent years, with the continuous development of electronic computers, their computing power has been greatly developed, which plays an increasingly important role in the field of scientific research and industry. However, with the development of electronic computers, The bottleneck of quantum mechanics and the defect of serial operation mode are becoming more and more obvious. The need of developing new computer is becoming more and more urgent because of its low power consumption. The advantages of high storage and high parallelism stand out from many theoretical models. Since Aldeman successfully solved a complex computing problem with DNA computing in 1994, DNA computing has been a hot topic in scientific research. Although DNA computing has many advantages compared with traditional electronic computing and has made great progress in recent years, it is still in the theoretical research stage. After many years of development, DNA computing is quite mature. It is feasible for DNA computing to be practical by imitating electronic computing. Logic operation, as the most important operation in electronic operation, is the cornerstone of electronic computing. It can't be done in the lab. We're trying to build a logical model of DNA computing that can be done under simpler experimental conditions. For the first time, we have constructed and verified the DNA logical operation model which can be completed under simple experimental conditions. In order to be able to perform the logical operation under simple experimental conditions, we do not use the detection methods such as sequencing, fluorescence and so on, which are too time-consuming or difficult to construct, but use the length of the DNA molecule as the output. Electrophoresis is used as a detection method to determine whether there are molecules of specific length in the system, so that the results can be detected economically and quickly. After referring to many classical models, such as paste model, cutting model and so on, Two logical operation models are constructed. Firstly, the logic operation model based on the circular DNA molecule is constructed. The model uses the circular molecule to complete the logical operation, and takes the specific DNA endonuclease as the input of the logic operation. This model is simple, practical and easy to implement, and can be implemented in a short time, taking the cyclic DNA molecule as the arithmetic molecule of logical operation and whether there is a specific length of DNA molecule as the output in the final system. In the case of low cost, the logic operation is realized. However, because the ring molecule is not easy to synthesize and the calculation is not automatic enough, we propose a logic operation model of DNA based on self-assembly, which makes use of the characteristics of complementary pairing of DNA molecules. Using DNA double-stranded molecules with complementary gaps as inputs and specific DNA endonuclease as operational molecules, we further improve the operability of DNA operations, and we also further improve our model. It makes it possible to parallel multiple logical operations, fully reflecting the advantages of high parallelism in DNA computing. Finally, the characteristics and shortcomings of the model are summarized, and the future research direction is prospected.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP38;Q523
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高琳,許進(jìn),張軍英;DNA計(jì)算的研究進(jìn)展與展望[J];電子學(xué)報(bào);2001年07期
2 尹屹梅,林祥欽;分子計(jì)算機(jī)的研究進(jìn)展[J];化學(xué)進(jìn)展;2001年05期
3 許進(jìn),保錚;神經(jīng)網(wǎng)絡(luò)與圖論[J];中國科學(xué)E輯:技術(shù)科學(xué);2001年06期
4 邱道文;基于完備剩余格值邏輯的自動(dòng)機(jī)理論——Ⅰ.拓?fù)淇坍媅J];中國科學(xué)E輯:技術(shù)科學(xué);2003年02期
5 陳虎,戴葵,胡守仁;環(huán)行陣列神經(jīng)網(wǎng)絡(luò)計(jì)算機(jī)系統(tǒng)[J];計(jì)算機(jī)研究與發(fā)展;1999年02期
6 許進(jìn),張雷;DNA計(jì)算機(jī)原理、進(jìn)展及難點(diǎn)(Ⅰ):生物計(jì)算系統(tǒng)及其在圖論中的應(yīng)用[J];計(jì)算機(jī)學(xué)報(bào);2003年01期
7 趙莉楠;;電子計(jì)算機(jī)發(fā)展對(duì)現(xiàn)代科技集成創(chuàng)新的啟示[J];科學(xué)對(duì)社會(huì)的影響;2009年01期
8 邱道文;量子自動(dòng)機(jī)的刻畫[J];軟件學(xué)報(bào);2003年01期
9 邱道文;基于量子邏輯的自動(dòng)機(jī)和文法理論[J];軟件學(xué)報(bào);2003年01期
10 高琳,馬潤年,許進(jìn);基于質(zhì)粒DNA匹配問題的分子算法[J];生物化學(xué)與生物物理進(jìn)展;2002年05期
本文編號(hào):1542065
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1542065.html