DNA自組裝邏輯運算模型
本文關(guān)鍵詞: DNA計算 邏輯運算 自組裝模型 并行計算 出處:《電子科技大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,隨著電子計算機不斷發(fā)展,其運算能力得到極大的發(fā)展,在科學(xué)研究和工業(yè)領(lǐng)域中扮演越來越重要的作用。然而隨著電子計算機的發(fā)展,其所面臨的量子力學(xué)瓶頸和串行運行方式的缺陷也日漸凸顯。發(fā)展新型計算機的需求日漸迫切,DNA計算機以其低功耗、高儲存和高并行性等優(yōu)點從眾多理論模型中脫穎而出。在Aldeman于1994年成功使用DNA計算實際解決了一個復(fù)雜計算問題以后,DNA計算一直是科學(xué)界研究的熱點。 雖然DNA計算相比傳統(tǒng)電子計算具有諸多優(yōu)點并且近年來取得了長足的進(jìn)步,但仍處于理論研究階段。DNA計算要實用化仍要解決很多實際困難,如何將DNA計算實用化,是急需解決的問題。電子計算經(jīng)過多年的發(fā)展已相當(dāng)成熟,DNA計算通過模仿電子計算以達(dá)到實用化是可行的,在模仿電子計算的同時也應(yīng)該保持DNA計算的原有的優(yōu)點。邏輯運算作為電子運算中最為重要的運算,是電子計算的基石。目前所存在的邏輯運算模型,更多的是停留在理論上,不能夠在實驗室完成。我們嘗試構(gòu)建一個在較簡單的實驗條件下能夠完成的DNA計算邏輯運算模型,為DNA計算的實用化做出有益探索。我們首次構(gòu)建并驗證了可在較簡單實驗條件下完成的DNA邏輯運算模型。 為了能夠在較簡單的實驗條件下完成邏輯運算,我們未采用測序、熒光等過于耗時或難于構(gòu)建的檢測手段,而采用DNA分子的長度作為輸出,通過電泳作為檢測手段判斷體系中是否存在特定長度的分子,這樣能夠經(jīng)濟快捷的檢測結(jié)果。在參考眾多的經(jīng)典模型,如粘貼模型、剪切模型等后,構(gòu)建了兩個邏輯運算模型。首先是基于環(huán)狀DNA分子的邏輯運算模型。該模型利用環(huán)狀分子完成邏輯運算,將特定的DNA內(nèi)切酶作為邏輯運算的輸入,,以環(huán)狀DNA分子作為邏輯運算的運算分子,以最后體系中是否存在特定長度的DNA分子作為輸出。該模型具有簡單實用、易于實現(xiàn)的特點,能夠在較短時間、較低成本的情況下實現(xiàn)邏輯運算。但由于環(huán)狀分子不易合成且計算不夠自動化,我們提出了基于自組裝的DNA邏輯運算模型。利用DNA分子互補配對的特點,將帶有互補缺口的DNA雙鏈分子作為輸入,將特定的DNA內(nèi)切酶作為運算分子,進(jìn)一步提升了DNA運算的可操作性。同時我們還進(jìn)一步改進(jìn)了我們的模型,使其能夠進(jìn)行多個邏輯運算并行,充分體現(xiàn)了DNA計算高并行性的優(yōu)勢。 最后,本文就模型的特點和存在的不足做出了總結(jié),同時對未來研究的方向進(jìn)行了展望。
[Abstract]:In recent years, with the continuous development of electronic computers, their computing power has been greatly developed, which plays an increasingly important role in the field of scientific research and industry. However, with the development of electronic computers, The bottleneck of quantum mechanics and the defect of serial operation mode are becoming more and more obvious. The need of developing new computer is becoming more and more urgent because of its low power consumption. The advantages of high storage and high parallelism stand out from many theoretical models. Since Aldeman successfully solved a complex computing problem with DNA computing in 1994, DNA computing has been a hot topic in scientific research. Although DNA computing has many advantages compared with traditional electronic computing and has made great progress in recent years, it is still in the theoretical research stage. After many years of development, DNA computing is quite mature. It is feasible for DNA computing to be practical by imitating electronic computing. Logic operation, as the most important operation in electronic operation, is the cornerstone of electronic computing. It can't be done in the lab. We're trying to build a logical model of DNA computing that can be done under simpler experimental conditions. For the first time, we have constructed and verified the DNA logical operation model which can be completed under simple experimental conditions. In order to be able to perform the logical operation under simple experimental conditions, we do not use the detection methods such as sequencing, fluorescence and so on, which are too time-consuming or difficult to construct, but use the length of the DNA molecule as the output. Electrophoresis is used as a detection method to determine whether there are molecules of specific length in the system, so that the results can be detected economically and quickly. After referring to many classical models, such as paste model, cutting model and so on, Two logical operation models are constructed. Firstly, the logic operation model based on the circular DNA molecule is constructed. The model uses the circular molecule to complete the logical operation, and takes the specific DNA endonuclease as the input of the logic operation. This model is simple, practical and easy to implement, and can be implemented in a short time, taking the cyclic DNA molecule as the arithmetic molecule of logical operation and whether there is a specific length of DNA molecule as the output in the final system. In the case of low cost, the logic operation is realized. However, because the ring molecule is not easy to synthesize and the calculation is not automatic enough, we propose a logic operation model of DNA based on self-assembly, which makes use of the characteristics of complementary pairing of DNA molecules. Using DNA double-stranded molecules with complementary gaps as inputs and specific DNA endonuclease as operational molecules, we further improve the operability of DNA operations, and we also further improve our model. It makes it possible to parallel multiple logical operations, fully reflecting the advantages of high parallelism in DNA computing. Finally, the characteristics and shortcomings of the model are summarized, and the future research direction is prospected.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP38;Q523
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高琳,許進(jìn),張軍英;DNA計算的研究進(jìn)展與展望[J];電子學(xué)報;2001年07期
2 尹屹梅,林祥欽;分子計算機的研究進(jìn)展[J];化學(xué)進(jìn)展;2001年05期
3 許進(jìn),保錚;神經(jīng)網(wǎng)絡(luò)與圖論[J];中國科學(xué)E輯:技術(shù)科學(xué);2001年06期
4 邱道文;基于完備剩余格值邏輯的自動機理論——Ⅰ.拓?fù)淇坍媅J];中國科學(xué)E輯:技術(shù)科學(xué);2003年02期
5 陳虎,戴葵,胡守仁;環(huán)行陣列神經(jīng)網(wǎng)絡(luò)計算機系統(tǒng)[J];計算機研究與發(fā)展;1999年02期
6 許進(jìn),張雷;DNA計算機原理、進(jìn)展及難點(Ⅰ):生物計算系統(tǒng)及其在圖論中的應(yīng)用[J];計算機學(xué)報;2003年01期
7 趙莉楠;;電子計算機發(fā)展對現(xiàn)代科技集成創(chuàng)新的啟示[J];科學(xué)對社會的影響;2009年01期
8 邱道文;量子自動機的刻畫[J];軟件學(xué)報;2003年01期
9 邱道文;基于量子邏輯的自動機和文法理論[J];軟件學(xué)報;2003年01期
10 高琳,馬潤年,許進(jìn);基于質(zhì)粒DNA匹配問題的分子算法[J];生物化學(xué)與生物物理進(jìn)展;2002年05期
本文編號:1542065
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1542065.html