面向終端應(yīng)用的云存儲(chǔ)系統(tǒng)研究與設(shè)計(jì)
本文關(guān)鍵詞: 云存儲(chǔ) 副本策略 負(fù)載均衡 系統(tǒng)架構(gòu) 粒子群優(yōu)化算法 出處:《廣東工業(yè)大學(xué)》2013年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著信息技術(shù)產(chǎn)業(yè)的發(fā)展和逐漸成熟,它的各種應(yīng)用已經(jīng)滲透到社會(huì)的各行各業(yè),使社會(huì)生產(chǎn)力水平得到了極大的提高,更重要的是為人們的生活、工作、學(xué)習(xí)帶來(lái)了前所未有的便利和實(shí)惠。在這背后,信息技術(shù)帶來(lái)的數(shù)據(jù)爆炸式增長(zhǎng),急需廉價(jià)、快捷并且安全的數(shù)據(jù)存儲(chǔ)方式。近幾年云計(jì)算技術(shù)的快速發(fā)展,為云存儲(chǔ)從概念到實(shí)際應(yīng)用奠定了基礎(chǔ)。同時(shí)由于終端技術(shù)的發(fā)展、移動(dòng)網(wǎng)絡(luò)的快速普及,云存儲(chǔ)的應(yīng)用范圍也逐漸擴(kuò)大。云終端的模式更加貼近人們的生活,正改變著人們的日常習(xí)慣。 本文對(duì)云存儲(chǔ)技術(shù)進(jìn)行研究,提出了針對(duì)終端應(yīng)用下的云存儲(chǔ)系統(tǒng)方案。對(duì)于小文件類(lèi)型采用兩種不同的副本存儲(chǔ)方式,一種是MySQL關(guān)系數(shù)據(jù)庫(kù)方式,另一種是MongoDB非關(guān)系數(shù)據(jù)庫(kù)方式;對(duì)于大文件類(lèi)型采用動(dòng)態(tài)一致性哈希算法方式來(lái)存儲(chǔ)。同時(shí)還引入了粒子群優(yōu)化算法,用于云存儲(chǔ)中數(shù)據(jù)最優(yōu)存儲(chǔ)節(jié)點(diǎn)選擇L。通過(guò)小規(guī)模的實(shí)際運(yùn)行系統(tǒng)以及CloudSim仿真的形式測(cè)試系統(tǒng)的性能。下面是本論文主要進(jìn)行的工作: (1)通過(guò)查閱期刊文獻(xiàn)、電子資源,研究了HDFS、FastDFS等開(kāi)源分布式文件系統(tǒng)源代碼。在分析系統(tǒng)的功能性需求以及非功能性需求的基礎(chǔ)之上,設(shè)計(jì)了云存儲(chǔ)系統(tǒng)架構(gòu)原型。 (2)對(duì)云存儲(chǔ)系統(tǒng)的客戶端和服務(wù)端程序的主要功能模塊進(jìn)行詳細(xì)設(shè)計(jì),并在普通PC機(jī)上編程搭建了一個(gè)小型的云存儲(chǔ)系統(tǒng)。通過(guò)該云存儲(chǔ)系統(tǒng)驗(yàn)證后文提出的副本策略以及粒子群優(yōu)化算法在數(shù)據(jù)最優(yōu)存儲(chǔ)節(jié)點(diǎn)選擇中的應(yīng)用效果。設(shè)計(jì)系統(tǒng)過(guò)程中,考慮移動(dòng)終端的特點(diǎn),在地域上考慮采用最近鄰的云存儲(chǔ)節(jié)點(diǎn)對(duì)其服務(wù),提高系統(tǒng)的存儲(chǔ)效率。 (3)針對(duì)云存儲(chǔ)系統(tǒng)的副本策略進(jìn)行研究,本文提出了對(duì)文件分類(lèi)存儲(chǔ)的方式,對(duì)于小文件類(lèi)型采用數(shù)據(jù)庫(kù)的方式,而大文件類(lèi)型采用動(dòng)態(tài)一致性哈希算法的方式。并且數(shù)據(jù)庫(kù)的方式也采用了兩種方案進(jìn)行對(duì)比分析設(shè)計(jì),一種是采用MySQL關(guān)系型數(shù)據(jù)庫(kù)方案,另一種是采用MongoDB非關(guān)系型數(shù)據(jù)庫(kù)方案。大文件類(lèi)型的處理方案設(shè)計(jì)成去中心化結(jié)構(gòu),消除大并發(fā)處理過(guò)程中的性能瓶頸,并對(duì)所提出的方案進(jìn)行了有效性和優(yōu)越性的驗(yàn)證。 (4)在數(shù)據(jù)最優(yōu)存儲(chǔ)節(jié)點(diǎn)選擇過(guò)程中引入粒子群優(yōu)化算法,保證系統(tǒng)的負(fù)載均衡和存儲(chǔ)效率。節(jié)點(diǎn)選擇是處在離散空間的,粒子群優(yōu)化算法重新在離散問(wèn)題空間中進(jìn)行定義,并且定義了問(wèn)題解的適應(yīng)度評(píng)價(jià)函數(shù),評(píng)價(jià)候選解的優(yōu)劣,同時(shí)為了得到更優(yōu)的解,引入了啟發(fā)信息的方式引導(dǎo)算法得出更優(yōu)的解;最后給出了仿真比較的結(jié)果驗(yàn)證方法的有效性。
[Abstract]:With the development and maturity of the information technology industry, its various applications have penetrated into all kinds of industries of the society, so that the level of social productivity has been greatly improved, more importantly, for the people's life, work, Learning has brought unprecedented convenience and benefits. Behind this, information technology has brought explosive growth in data, and is in urgent need of cheap, fast, and secure data storage. The rapid development of cloud computing technology in recent years, It lays a foundation for cloud storage from concept to practical application. At the same time, with the development of terminal technology and the rapid popularization of mobile network, the application scope of cloud storage is gradually expanded. The model of cloud terminal is closer to people's life. Is changing people's daily habits. In this paper, the cloud storage technology is studied, and a cloud storage system scheme for terminal applications is proposed. For small file types, two different replica storage methods are adopted, one is MySQL relational database, the other is MySQL relational database. The other is the MongoDB non-relational database, the dynamic consistency hash algorithm is used to store large file types, and the particle swarm optimization (PSO) algorithm is also introduced. The performance of the system is tested in the form of small scale actual running system and CloudSim simulation. The following is the main work of this paper:. This paper studies the source code of open source distributed file system such as HDFS FastDFS. Based on the analysis of the functional and non-functional requirements of the system, the architecture prototype of cloud storage system is designed. The main function modules of client and server programs of cloud storage system are designed in detail. A small cloud storage system is built by programming on ordinary PC computer. The replica strategy and particle swarm optimization (PSO) algorithm are used to verify the application effect of the proposed replica strategy and particle swarm optimization algorithm in the selection of data optimal storage nodes through the cloud storage system. In the design process of the system, Considering the characteristics of the mobile terminal, the nearest neighbor cloud storage node is considered to serve the mobile terminal in order to improve the storage efficiency of the system. 3) aiming at the research of replica strategy of cloud storage system, this paper puts forward the method of file classification storage, and adopts the method of database for small file type. The large file type uses the dynamic consistency hash algorithm. And the database also adopts two schemes to carry on the comparative analysis design, one is to adopt the MySQL relational database scheme, one is to adopt the MySQL relational database scheme, one is to adopt the MySQL relational database scheme, one is to adopt the MySQL relational database scheme. The other is to adopt the MongoDB non-relational database scheme. The processing scheme of large file type is designed as a decentralized structure to eliminate the performance bottleneck in the process of large concurrent processing. The validity and superiority of the proposed scheme are verified. In order to ensure the load balance and storage efficiency of the system, the particle swarm optimization algorithm is introduced in the data optimal storage node selection process. The node selection is in the discrete space, and the particle swarm optimization algorithm is redefined in the discrete problem space. The fitness evaluation function of the problem solution is defined to evaluate the advantages and disadvantages of the candidate solution. In order to obtain a better solution, the heuristic information is introduced to guide the algorithm to get a better solution. Finally, the effectiveness of the simulation results is given.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TP333
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭文忠;陳國(guó)龍;陳振;;離散粒子群優(yōu)化算法研究綜述[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期
2 馬瑋駿;吳海佳;劉鵬;;MassCloud云存儲(chǔ)系統(tǒng)構(gòu)架及可靠性機(jī)制[J];河海大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
3 李?lèi)?ài)國(guó),覃征,鮑復(fù)民,賀升平;粒子群優(yōu)化算法[J];計(jì)算機(jī)工程與應(yīng)用;2002年21期
4 伍文靜;程耀東;汪璐;武杰;陳剛;;面向本地分布式存儲(chǔ)系統(tǒng)的動(dòng)態(tài)副本策略[J];計(jì)算機(jī)工程與應(yīng)用;2010年12期
5 婁美明;金波;;結(jié)構(gòu)化P2P網(wǎng)絡(luò)的負(fù)載均衡技術(shù)研究[J];計(jì)算機(jī)與現(xiàn)代化;2012年02期
6 李飛;郭昌松;趙伯聽(tīng);曾輝;;基于內(nèi)容分發(fā)的數(shù)據(jù)網(wǎng)格副本創(chuàng)建策略[J];計(jì)算機(jī)應(yīng)用研究;2012年10期
7 倪蘭;陳琛;;華為云手機(jī),概念之上是什么?[J];通信世界;2011年28期
8 王意潔;孫偉東;周松;裴曉強(qiáng);李小勇;;云計(jì)算環(huán)境下的分布存儲(chǔ)關(guān)鍵技術(shù)[J];軟件學(xué)報(bào);2012年04期
9 江澤民;;新時(shí)期我國(guó)信息技術(shù)產(chǎn)業(yè)的發(fā)展[J];上海交通大學(xué)學(xué)報(bào);2008年10期
10 石劉;郭明陽(yáng);劉瀏;沈玉良;許魯;;基于反饋機(jī)制的動(dòng)態(tài)副本數(shù)量預(yù)測(cè)方法[J];系統(tǒng)仿真學(xué)報(bào);2011年S1期
相關(guān)博士學(xué)位論文 前1條
1 楊輕云;約束滿足問(wèn)題與調(diào)度問(wèn)題中離散粒子群算法研究[D];吉林大學(xué);2006年
相關(guān)碩士學(xué)位論文 前7條
1 張偉;基于分布式存儲(chǔ)的移動(dòng)GIS技術(shù)與應(yīng)用研究[D];解放軍信息工程大學(xué);2010年
2 郅斌;一種私有云存儲(chǔ)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2011年
3 徐婧;云存儲(chǔ)環(huán)境下副本策略研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
4 劉飛;基于云計(jì)算的分布式存儲(chǔ)系統(tǒng)的研究和應(yīng)用[D];西安工業(yè)大學(xué);2012年
5 陳勇;基于存儲(chǔ)虛擬化的動(dòng)態(tài)副本及資源管理系統(tǒng)研究[D];華中科技大學(xué);2004年
6 黃曉云;基于HDFS的云存儲(chǔ)服務(wù)系統(tǒng)研究[D];大連海事大學(xué);2010年
7 郭耀華;基于云存儲(chǔ)的數(shù)據(jù)存儲(chǔ)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2012年
,本文編號(hào):1511935
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1511935.html