基于嵌入式的超級電容器參數(shù)測量系統(tǒng)的研究
發(fā)布時間:2018-01-19 12:41
本文關鍵詞: DSP FPGA 超級電容器 大電流恒流 并聯(lián)均流 雙積分調(diào)節(jié) 出處:《天津大學》2012年碩士論文 論文類型:學位論文
【摘要】:隨著嵌入式技術及DSP、FPGA在超級電容器測試領域的應用不斷深入,使得超級電容測試機的便攜化大大加快;诠β蔒OSFET的大電流控制技術已經(jīng)基本成型,作為數(shù)字化技術領跑者的DSP、FPGA無可爭議地取代了MCU(單片機)在超級電容器測試系統(tǒng)中的主導地位;谶@一背景,本課題提出并完成了基于嵌入式的超級電容器參數(shù)測量系統(tǒng)的研究。 本文在深入分析超級電容器內(nèi)部結構的基礎上,提出了大電流恒流充放電的方法來實現(xiàn)測量,通過功率MOSFET并聯(lián)擴大電流并恒定電流,通過雙積分調(diào)節(jié)實現(xiàn)閉環(huán)控制,提高恒流精度。并對MOSFET并聯(lián)均流進行了分析,對雙積分調(diào)節(jié)模塊做了祥述。 根據(jù)設計的要求,論文確定了基于MOSFET的大電流恒流充放電測量方法的全套硬件、軟件方案,實現(xiàn)了測量流程的精確控制,并且電壓、電流可設置,能滿足相應類型多種超級電容器的測試。在雙積分調(diào)節(jié)控制中,其中內(nèi)環(huán)積分調(diào)節(jié)通過硬件實現(xiàn),使得調(diào)節(jié)過程連續(xù),更能實時地調(diào)節(jié)。放電過程通過對超級電容器反向充電實現(xiàn),這樣才便于大電流恒流控制,提升了系統(tǒng)的整體性能,整套方案實現(xiàn)了先進技術與成熟原理的優(yōu)勢互補。構建了基于DSP+FPGA的控制系統(tǒng),為流程控制和人機交互搭建了良好的硬件平臺。設計并搭建測試過程參數(shù)的實時采集電路,實現(xiàn)了測量信息的高精度獲取。外部IO由FPGA統(tǒng)一管理,便于系統(tǒng)擴展和完善。軟件設計中采用功能模塊化的設計方法,各控制模塊分開管理,方便程序閱讀和理解,且便于程序的更新升級。 本文主要測量超級電容器的容量和內(nèi)阻兩個參數(shù),由于其內(nèi)阻一般在毫歐級,采取了很好的抗干擾措施以保證測量精度。在容量的測量中,通過雙閉環(huán)控制提高恒流精度,進而保證了容量的測量精度。
[Abstract]:With the application of embedded technology and DSP FPGA in the field of super capacitor testing, the application of DSP FPGA in the field of supercapacitor testing is becoming more and more in-depth. The high current control technology based on power MOSFET has been basically formed as the leading digital technology of DSP. FPGA has indisputably replaced the dominant position of MCU in supercapacitor test system. Based on this background. In this paper, the parameter measurement system of supercapacitor based on embedded system is proposed and completed. Based on the deep analysis of the internal structure of the supercapacitor, this paper presents a method of high current constant current charge and discharge to realize the measurement, which expands the current and the constant current through the power MOSFET parallel connection. The closed loop control is realized by double integral regulation, and the accuracy of constant current is improved. The parallel current sharing of MOSFET is analyzed, and the double integral regulation module is described. According to the requirements of the design, the paper determines the full set of hardware and software scheme of the measurement method of high current constant current charge and discharge based on MOSFET, realizes the accurate control of the measuring flow, and the voltage and current can be set. It can satisfy the test of the corresponding type of supercapacitor. In the double integral regulation control, the inner loop integral regulation is realized by hardware, which makes the regulation process continuous. The discharge process is realized by reverse charging the supercapacitor, which is convenient for the high current constant current control and improves the overall performance of the system. The whole scheme realizes the complementary advantages of advanced technology and mature principle. The control system based on DSP FPGA is constructed. A good hardware platform is built for flow control and man-machine interaction. The real-time acquisition circuit of testing process parameters is designed and built. The high precision acquisition of measurement information is realized. The external IO is managed by FPGA. It is convenient to extend and perfect the system. The design method of function modularization is adopted in the software design, each control module is managed separately, it is convenient for the program to read and understand, and it is convenient to update and upgrade the program. In this paper, the capacitance and internal resistance of the supercapacitor are mainly measured. Because the internal resistance of the supercapacitor is generally in the milliohore level, good anti-interference measures are taken to ensure the accuracy of the measurement, and in the measurement of the capacity. The accuracy of constant current is improved by double closed loop control, and the accuracy of capacity measurement is ensured.
【學位授予單位】:天津大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TM53;TP368.1
【參考文獻】
相關期刊論文 前10條
1 趙淑紅,吳鋒,蘇岳鋒;電化學電容器碳基電極材料研究進展[J];材料導報;2003年04期
2 吳茂成;;高精度寬范圍恒流源設計[J];電測與儀表;2011年01期
3 王建立,劉文華;碳基電化學電容器及其研究進展[J];電源技術;2000年01期
4 李建玲,梁吉,徐景明,毛宗強;雙電層電容器有機電解液研究進展[J];電源技術;2001年03期
5 劉志祥,董國君,張密林;雙電層電容器的制備及性能[J];電源技術;2001年06期
6 王曉峰,解晶瑩,孔祥華,劉慶國;“超電容”電化學電容器研究進展[J];電源技術;2001年S1期
7 李海冬;馮之鉞;齊智平;;一種超級電容器快速電壓均衡方法的研究[J];電源技術;2007年03期
8 張丹丹,姚宗干;大容量高儲能密度電化學電容器的研究進展[J];電子元件與材料;2000年01期
9 顧溫國,李勁,夏云發(fā),曹婉真;紐扣型液體雙電層電容器的研制[J];電子元件與材料;2000年03期
10 王曉峰,王大志,梁吉;5V型活性炭基超電容器的研制[J];電子元件與材料;2003年01期
相關碩士學位論文 前1條
1 劉志祥;超級電容器相關技術研究[D];哈爾濱工程大學;2002年
,本文編號:1444240
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1444240.html
最近更新
教材專著