天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

云計(jì)算環(huán)境下GML空間數(shù)據(jù)存儲(chǔ)索引機(jī)制研究

發(fā)布時(shí)間:2018-01-03 06:29

  本文關(guān)鍵詞:云計(jì)算環(huán)境下GML空間數(shù)據(jù)存儲(chǔ)索引機(jī)制研究 出處:《江西理工大學(xué)》2012年碩士論文 論文類(lèi)型:學(xué)位論文


  更多相關(guān)文章: 云計(jì)算 GML 空間數(shù)據(jù)劃分 分布式存儲(chǔ) Hadoop平臺(tái)


【摘要】:GML是基于XML對(duì)空間數(shù)據(jù)進(jìn)行的編碼,并為GIS領(lǐng)域和各企業(yè)廣泛接受,是目前網(wǎng)絡(luò)空間信息的重要組成部分。隨著信息技術(shù)的發(fā)展,空間信息量急劇的增加;如何對(duì)GML空間數(shù)據(jù)進(jìn)行有效的存儲(chǔ)和管理成了影響GML發(fā)展的關(guān)鍵問(wèn)題。依據(jù)GML空間數(shù)據(jù)自身的特性(地域分布性),使用集中式的存儲(chǔ)不利于對(duì)空間數(shù)據(jù)的統(tǒng)一管理和訪(fǎng)問(wèn);而云存儲(chǔ)是一種商業(yè)化實(shí)現(xiàn)的分布式存儲(chǔ);它是將一些廉價(jià)計(jì)算機(jī)的空閑資源集中起來(lái),共同分擔(dān)海量數(shù)據(jù)的分布式存儲(chǔ)和管理任務(wù)的。所以,對(duì)GML空間數(shù)據(jù)采用分布式存儲(chǔ)和管理是一個(gè)比較好的方案。 針對(duì)海量GML空間數(shù)據(jù)如何進(jìn)行有效的存儲(chǔ),主要進(jìn)行了以下幾方面的研究及創(chuàng)新點(diǎn)分析: 首先,需要對(duì)空間數(shù)據(jù)進(jìn)行合理的劃分,既要考慮空間數(shù)據(jù)多維的特性,,又要考慮其空間關(guān)系和拓?fù)潢P(guān)系等;對(duì)幾種空間數(shù)據(jù)劃分進(jìn)行分析過(guò)后,又對(duì)Hilbert曲線(xiàn)層次分解算法和GML矢量圖層分割的空間數(shù)據(jù)劃分進(jìn)行了研究,提出了對(duì)GML空間要素圖層的劃分并結(jié)合Hilbert曲線(xiàn)層次劃分快速編碼的方法對(duì)空間要素對(duì)象進(jìn)行劃分處理;在具體的應(yīng)用中,參照分布式存儲(chǔ)系統(tǒng)中各子節(jié)點(diǎn)的信息對(duì)要素對(duì)象進(jìn)行分塊劃分,并分配相應(yīng)子節(jié)點(diǎn)的空閑資源進(jìn)行分布式存儲(chǔ); 其次,在云計(jì)算環(huán)境下對(duì)分布式數(shù)據(jù)庫(kù)的設(shè)計(jì),結(jié)合GML空間數(shù)據(jù)的特征和Hadoop平臺(tái)的主從式架構(gòu),對(duì)各主從服務(wù)器節(jié)點(diǎn)所存儲(chǔ)的相關(guān)表結(jié)構(gòu)、數(shù)據(jù)類(lèi)型等進(jìn)行了設(shè)計(jì)。針對(duì)分布式存儲(chǔ)的GML空間數(shù)據(jù)的索引機(jī)制和索引結(jié)構(gòu)表也進(jìn)行了分析研究,主要研究了QR樹(shù)的特性和對(duì)GML索引的構(gòu)建; 最后,在Hadoop開(kāi)源平臺(tái)的主從式架構(gòu)下對(duì)分布式存儲(chǔ)的原型系統(tǒng)進(jìn)行了設(shè)計(jì)和部分實(shí)現(xiàn),并通過(guò)實(shí)驗(yàn)對(duì)單機(jī)存儲(chǔ)和分布式存儲(chǔ)的效率及其查詢(xún)?cè)L問(wèn)的效率進(jìn)行了比較分析,得出了對(duì)海量的GML空間數(shù)據(jù)無(wú)論是在存儲(chǔ)還是查詢(xún)?cè)L問(wèn),分布式計(jì)算機(jī)集群的處理效率都高于單機(jī)的處理效率。 創(chuàng)新點(diǎn)主要有通過(guò)Hilbert曲線(xiàn)對(duì)GML空間數(shù)據(jù)采用要素隊(duì)列的劃分方法;結(jié)合hadoop平臺(tái)對(duì)GML數(shù)據(jù)的并行空間索引機(jī)制的創(chuàng)建及各子節(jié)點(diǎn)索引結(jié)構(gòu)表的設(shè)計(jì);GML空間數(shù)據(jù)分布式存儲(chǔ)流程的設(shè)計(jì);云存儲(chǔ)系統(tǒng)功能設(shè)計(jì)與實(shí)現(xiàn)等。
[Abstract]:GML is the XML of spatial data based on the encoding, and widely accepted as the GIS field and the enterprise, is an important part of spatial information network. With the development of information technology, the spatial information quantity increases sharply; how to effectively store and pipe of GML spatial data management has become the key issues affecting the development of GML. According to the characteristics of GML spatial data itself (regional distribution), the use of centralized storage is not conducive to the unified management and access of spatial data; and the cloud storage is a commercial implementation of distributed storage; it is free of some cheap computer resources together and share the distributed storage and management of massive data task. So, the spatial data of GML using distributed storage and management is a better solution.
In view of how to store the massive GML spatial data effectively, the following research and innovation are mainly carried out in the following aspects:
First of all, the need for a reasonable division of spatial data, it is necessary to consider the characteristics of spatial data cube, but also consider the spatial relations and topological relations; to analyze the data of several space division after Hilbert curve hierarchical decomposition of spatial data partitioning algorithm and GML layer were studied. The proposed division of GML the elements of space and layer method combined with the Hilbert curve hierarchy division fast encoding processing for space object elements; in the specific application, divided the elements of object for each sub node according to the information in the distributed storage system, distributed storage resources and free distribution of the corresponding child node;
Secondly, design and calculation of distributed database in the cloud environment, combined with the master-slave architecture of GML spatial data and the characteristics of Hadoop platform, the table structure of the master-slave server nodes stored, data types are designed. The distributed memory GML spatial data indexing mechanism and index structure of table analysis of the characteristics, mainly studies the QR tree and the GML index construction;
Finally, in the master-slave architecture of the Hadoop open-source platform under the prototype system of distributed storage has been designed and partially implemented, and make a comparison through experiments on the efficiency of single storage and distributed storage and query efficiency, the GML spatial data in the mass both in storage access and query efficiency of distributed processing the computer cluster is higher than single processing efficiency.
The main innovation division method by using factor queue for GML spatial data through the Hilbert curve; design and create sub node index structure table with the Hadoop platform of GML data parallel spatial indexing mechanism; design of GML spatial data distributed storage process; cloud storage and realize the functional design of the system.

【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TP333

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 任金銅;;基于GML空間數(shù)據(jù)結(jié)構(gòu)的GMLGIS研究[J];測(cè)繪標(biāo)準(zhǔn)化;2009年04期

2 蘭小機(jī),張書(shū)亮,劉德兒,閭國(guó)年;GML空間數(shù)據(jù)庫(kù)系統(tǒng)研究[J];測(cè)繪科學(xué);2005年05期

3 蘭小機(jī);張建峰;鄧華梅;;GML空間數(shù)據(jù)在Oracle中的存儲(chǔ)研究[J];測(cè)繪科學(xué);2009年02期

4 張立朝;呂蓬;王建明;申正宇;李強(qiáng);李遵強(qiáng);;基于GML的空間數(shù)據(jù)庫(kù)設(shè)計(jì)與數(shù)據(jù)存儲(chǔ)研究[J];測(cè)繪通報(bào);2008年03期

5 周艷;朱慶;張葉廷;;基于Hilbert曲線(xiàn)層次分解的空間數(shù)據(jù)劃分方法[J];地理與地理信息科學(xué);2007年04期

6 李驍;范沖;鄒崢嶸;;空間數(shù)據(jù)存儲(chǔ)模式的比較研究[J];工程地質(zhì)計(jì)算機(jī)應(yīng)用;2009年02期

7 吳紹忠;李靖;;基于云計(jì)算架構(gòu)的公安情報(bào)信息平臺(tái)建設(shè)研究[J];中國(guó)人民公安大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期

8 孟令奎;張文;;分布式空間數(shù)據(jù)庫(kù)的動(dòng)態(tài)負(fù)載平衡算法[J];計(jì)算機(jī)工程;2008年11期

9 邱建華,唐學(xué)兵,黃華國(guó);一種基于四叉樹(shù)和R~*-樹(shù)的索引結(jié)構(gòu)——QR~*-樹(shù)[J];計(jì)算機(jī)應(yīng)用;2003年08期

10 高波;郭朝珍;丁善鏡;;基于GML矢量圖層分割的空間數(shù)據(jù)分布式協(xié)同處理的研究[J];計(jì)算機(jī)應(yīng)用;2009年01期

相關(guān)博士學(xué)位論文 前2條

1 趙春宇;高性能并行GIS中矢量空間數(shù)據(jù)存取與處理關(guān)鍵技術(shù)研究[D];武漢大學(xué);2006年

2 陳建華;原生模式GML空間數(shù)據(jù)管理機(jī)制研究[D];成都理工大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 王海波;云計(jì)算中數(shù)據(jù)庫(kù)的關(guān)鍵問(wèn)題研究與實(shí)現(xiàn)[D];吉林大學(xué);2011年

2 周一可;云計(jì)算下MapReduce編程模型可用性的研究與優(yōu)化[D];上海交通大學(xué);2011年

3 霍樹(shù)民;基于Hadoop的海量影像數(shù)據(jù)管理關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年

4 金松昌;基于HDFS的多用戶(hù)并行文件IO的設(shè)計(jì)與實(shí)現(xiàn)[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年

5 朱珠;基于Hadoop的海量數(shù)據(jù)處理模型研究和應(yīng)用[D];北京郵電大學(xué);2008年

6 馬冬青;基于Oracle XML DB技術(shù)的GML數(shù)據(jù)存儲(chǔ)研究[D];中南大學(xué);2008年

7 紀(jì)俊;一種基于云計(jì)算的數(shù)據(jù)挖掘平臺(tái)架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)[D];青島大學(xué);2009年

8 鄧自立;云計(jì)算中的網(wǎng)絡(luò)拓?fù)湓O(shè)計(jì)和Hadoop平臺(tái)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年

9 肖輝輝;GML空間數(shù)據(jù)存儲(chǔ)研究[D];江西理工大學(xué);2009年

10 李云桃;基于Hadoop的海量數(shù)據(jù)處理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2009年



本文編號(hào):1372785

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1372785.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)052da***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com