重型機(jī)床裝配精度可靠性評(píng)價(jià)及其工藝設(shè)計(jì)方法
發(fā)布時(shí)間:2018-02-28 22:32
本文關(guān)鍵詞: 重型機(jī)床 裝配 精度 可靠性 工藝設(shè)計(jì) 出處:《哈爾濱理工大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:作為核電壓力容器的關(guān)鍵零件,水室封頭長(zhǎng)期在高溫、高壓與腐蝕條件下工作,其設(shè)計(jì)、選材與加工制造等都有著極為嚴(yán)格的要求。該類零件重達(dá)數(shù)十噸至上百噸,其工件材料一般為低碳合金鋼,此類材料雖然硬度不高,但韌性和強(qiáng)度較高,切削加工性能差,其加工時(shí)切削力大、切削溫度高、振動(dòng)劇烈,切削載荷變化情況復(fù)雜,對(duì)于機(jī)床的承載能力、抗振性提出了極高要求,已有的重型機(jī)床無法滿足水室封頭的加工要求。因此,開發(fā)高水平重型數(shù)控機(jī)床設(shè)計(jì)、制造技術(shù),研制水室封頭專用數(shù)控龍門移動(dòng)式車銑加工中心,滿足大尺寸、大噸位、高精度核電零件精確加工與批量化生產(chǎn)的需求,對(duì)推動(dòng)核電裝備制造技術(shù)進(jìn)步,促進(jìn)國(guó)產(chǎn)重型數(shù)控機(jī)床技術(shù)的發(fā)展具有重要現(xiàn)實(shí)意義。重型數(shù)控機(jī)床整機(jī)結(jié)構(gòu)龐大,初次裝配檢驗(yàn)合格后,需要將部分零部件拆卸,運(yùn)至生產(chǎn)現(xiàn)場(chǎng)進(jìn)行二次裝配,對(duì)機(jī)床裝配精度可靠性要求高。該機(jī)床裝配變形和累積誤差大,在裝配中經(jīng)常采用修研、試湊方法,導(dǎo)致床身、立柱、導(dǎo)軌、橫梁等零部件全行程配合精度低,裝配精度可靠性差,無法滿足機(jī)床運(yùn)動(dòng)部件平穩(wěn)、可靠傳遞精度和動(dòng)力的需求。本文針對(duì)水室封頭數(shù)控龍門移動(dòng)式車銑加工中心研制中存在的上述問題,進(jìn)行重型機(jī)床裝配精度可靠性與裝配工藝設(shè)計(jì)方法研究,主要內(nèi)容包括:為滿足水室封頭專機(jī)的車削、銑削、鏜削的功能需求,研究機(jī)床功能與機(jī)床結(jié)構(gòu)、裝配工藝的映射關(guān)系,建立機(jī)床裝配精度可靠性評(píng)價(jià)指標(biāo),揭示機(jī)床裝配精度可靠性與結(jié)構(gòu)的映射關(guān)系,構(gòu)建機(jī)床裝配工藝層次結(jié)構(gòu),通過裝配載荷與裝配變量分析,提出機(jī)床裝配精度可靠性工藝設(shè)計(jì)方案,并進(jìn)行實(shí)例驗(yàn)證。采用多體系統(tǒng)模型,分析機(jī)床裝配初始誤差的形成過程,揭示初始誤差的影響因素及其累積過程,提出機(jī)床部件形位誤差源、接觸誤差源和整機(jī)裝配初始誤差解算方法,并進(jìn)行機(jī)床初次裝配工藝評(píng)判和誤差檢測(cè)。針對(duì)機(jī)床裝配精度隨裝配工序變化特性,表征初次裝配精度遷移、重復(fù)裝配精度遷移和機(jī)床運(yùn)行中的裝配精度遷移過程,研究機(jī)床裝配精度與變形場(chǎng)的映射關(guān)系,提出機(jī)床變形場(chǎng)影響因素與關(guān)鍵工序變量識(shí)別方法,建立機(jī)床裝配精度遷移判據(jù),構(gòu)建機(jī)床裝配精度遷移模型,揭示裝配精度遷移的形成、增長(zhǎng)和轉(zhuǎn)變機(jī)制,提出機(jī)床裝配工藝設(shè)計(jì)方法,并進(jìn)行實(shí)例驗(yàn)證。針對(duì)水室封頭車銑加工中心B軸組件裝配精度設(shè)計(jì)要求,分析B軸重要組件滑枕的變形特性,建立滑枕組件前端面裝配誤差的解算模型,通過機(jī)床B軸結(jié)構(gòu)設(shè)計(jì)方案評(píng)判,獲得滿足設(shè)計(jì)要求的B軸組件結(jié)構(gòu)修正設(shè)計(jì)方案,并對(duì)該方案效果進(jìn)行驗(yàn)證。
[Abstract]:As a key part of nuclear power pressure vessel, the head of water chamber works under the conditions of high temperature, high pressure and corrosion for a long time. Its design, material selection, processing and manufacture have very strict requirements. The weight of this kind of parts is tens to hundreds of tons. The workpiece material is generally low carbon alloy steel. Although the hardness of this kind of material is not high, its toughness and strength are high, and its cutting performance is poor. The cutting force is large, the cutting temperature is high, the vibration is intense, and the cutting load changes are complicated. The bearing capacity and vibration resistance of machine tools are very high, and the existing heavy-duty machine tools can not meet the processing requirements of the head of water chamber. Therefore, the design and manufacturing technology of high level heavy numerical control machine tools is developed. To develop a special CNC gantry turn-milling machining center for water chamber head, to meet the needs of large size, large tonnage and high precision nuclear power parts precision machining and mass production, and to promote the progress of nuclear power equipment manufacturing technology. It is of great practical significance to promote the development of domestic heavy-duty NC machine tool technology. The heavy NC machine tool has a large structure and needs to disassemble some parts and components to the production site for secondary assembly after the first assembly and inspection. The accuracy and reliability of the machine tool assembly is high. The assembly deformation and accumulated error of the machine tool are large, and the method of revision and research is often used in the assembly, which leads to the low precision of the whole stroke matching of the parts such as the bed, the column, the guide rail, the beam, and so on. Because of the poor reliability of assembly precision, it can not meet the requirements of stable, reliable transmission of precision and power of the moving parts of the machine tool. This paper aims at the above problems in the development of the CNC gantry movable turn-milling machining center with water chamber seal head. In order to meet the needs of turning, milling and boring of water chamber head special machine, the function and structure of machine tool are studied. The mapping relation of assembly process, the evaluation index of machine tool assembly precision reliability, the mapping relation between machine tool assembly precision reliability and structure, the construction of machine tool assembly process hierarchy structure, and the analysis of assembly load and assembly variables are established. The reliability process planning scheme of machine tool assembly accuracy is put forward and verified by an example. The forming process of machine tool assembly initial error is analyzed by using multi-body system model, and the influencing factors of initial error and its accumulation process are revealed. In this paper, the error source of machine tool parts, contact error source and initial error calculation method of whole machine assembly are put forward, and the primary assembly process evaluation and error detection of machine tool are carried out. According to the characteristics of machine tool assembly accuracy varying with assembly process, This paper describes the migration of primary assembly precision, repeated assembly precision and assembly precision migration in machine tool operation. The mapping relationship between machine tool assembly precision and deformation field is studied, and the identification method of influencing factors and key process variables of machine tool deformation field is put forward. The criterion of machine tool assembly precision migration is established, the model of machine tool assembly precision migration is constructed, the forming, increasing and transforming mechanism of assembly precision migration is revealed, and the method of machine tool assembly process design is put forward. According to the design requirements of assembly accuracy of B-axis components in the water chamber head turn-milling machining center, the deformation characteristics of the sliding pillow of the important components of B-axis are analyzed, and the calculation model of the assembly error of the front surface of the head-end of the sliding pillow is established. By judging the design scheme of machine tool's B-axis structure, the modified design scheme of B-axis component structure is obtained, and the effect of the scheme is verified.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG659
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李鉅威;趙韶東;田翔;;大型轉(zhuǎn)子氣孔加工專用機(jī)床的設(shè)計(jì)與制造[J];機(jī)電工程技術(shù);2012年04期
2 章婷;葉文華;梁睿君;單以才;劉世豪;;數(shù)控機(jī)床熱誤差變參數(shù)GM(1,1)的建模[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
3 胡占齊;解亞飛;劉金超;;超重型數(shù)控鏜銑床精度可靠性研究[J];哈爾濱工程大學(xué)學(xué)報(bào);2011年12期
4 王西珍;李言;成剛虎;;柴油機(jī)主運(yùn)動(dòng)機(jī)構(gòu)運(yùn)動(dòng)精度可靠性算法[J];農(nóng)業(yè)工程學(xué)報(bào);2011年04期
5 傅建中;姚鑫驊;賀永;沈洪W,
本文編號(hào):1549286
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1549286.html
最近更新
教材專著