數(shù)控漸進成形反彈補償成形軌跡生成
[Abstract]:As a kind of flexible machining technology, numerical control incremental forming technology has been developed gradually because of its rapid manufacturing of complex sheet metal parts. At the same time, there are some problems, such as forming precision. Rebound is a key problem that restricts the forming accuracy of sheet metal. The traditional method to solve the rebound is experimental method, which is compensated according to the amount of rebound measured. However, because of the complexity of many factors that cause the rebound, The primary compensation is often difficult to achieve the precision requirement, but many experiments waste time and material resources. Therefore, this paper presents a method for predicting the rebound quantity and generating the compensation forming trajectory based on the digital analog explicit / implicit finite element analysis. And develop a special trajectory generation software system. In this paper, the rebound of sheet metal is divided into the rebound in the forming process and the rebound after unloading. First, the first forming track is generated from the part to be formed, and the rebound during sheet metal forming is simulated by explicit finite element analysis with the tool location of the track. The rebound after unloading is simulated by implicit finite element analysis based on the results of explicit analysis. Secondly, the coordinates of all nodes of the plate model are derived from the results of implicit finite element analysis, and then the surface of the plate after the rebound simulation is reconstructed, and the surface reconstruction model is compared with the theoretical model, and the deviation value of the normal rebound is calculated. Thirdly, according to the deviation value of normal rebound, the compensation surface and the forming trajectory are generated by the theoretical model with non-equidistant bias, and the finite element analysis is carried out again by using the trajectory point, and the above process is repeated until the precision requirement of the user is met. Fourthly, a compensation iterative algorithm is proposed for different compensation distances in the process of multiple compensation, and a smoothing algorithm is proposed for the problem of non-smooth compensation surface in the process of multiple compensation. At the same time, a software system based on VC 6.0 / MFC and OPenGL visualization platform is developed, which can realize the functions of contour track generation, surface reconstruction, rebound deviation calculation, compensation surface forming trajectory generation and so on. Finally, the conclusion is drawn from the finite element analysis that the accuracy of forming can be satisfied with the third compensation. Then the forming trajectory of the theoretical model and the compensation model after the cubic compensation are tested. The experimental results show that the proposed method is feasible to predict and compensate the forming trajectory based on the digital analog explicit / implicit finite element analysis, and can improve the forming accuracy of sheet metal parts.
【學(xué)位授予單位】:沈陽航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG306
【相似文獻】
相關(guān)期刊論文 前10條
1 薛剛,孟麗;抓具抓取軌跡曲線及其繪制[J];林業(yè)科技;1992年03期
2 李鵬;馮宏;董建梁;程海;;OpenSceneGraph在水平鉆孔軌跡三維立體成圖中的應(yīng)用[J];電子測試;2013年09期
3 彭立矩;;耙爪機構(gòu)的軌跡設(shè)計[J];礦山機械;1982年10期
4 Yong LI;Jin WANG;Guo-dong LU;Guo-jun PAN;;無芯模旋壓旋輪軌跡曲線對其成形精度影響的仿真研究(英文)[J];Journal of Zhejiang University-Science A(Applied Physics & Engineering);2014年06期
5 武傳宇;賀磊盈;李秦川;胡旭東;;基于CAD模型的鞋底噴膠軌跡生成方法[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2008年05期
6 蘇鵬;魏戰(zhàn)沖;;旋壓成型中旋輪軌跡設(shè)計及對成型結(jié)果的影響[J];兵工自動化;2014年08期
7 李和勤;實現(xiàn)給定軌跡的平面四桿機構(gòu)設(shè)計的CAD方法[J];山東輕工業(yè)學(xué)院學(xué)報(自然科學(xué)版);2005年02期
8 黃井武;王志強;譚玉峰;;煤礦工程鉆孔軌跡參數(shù)計算方法及繪圖[J];建井技術(shù);2012年02期
9 李鵬;馮宏;董建梁;程海;;OpenSceneGraph在水平鉆孔軌跡三維立體成圖中的應(yīng)用[J];電子測試;2013年08期
10 李充寧;;等厚度直線截煤機構(gòu)的研究[J];煤礦機電;1993年06期
相關(guān)會議論文 前1條
1 胡凌云;孫增圻;;基于模糊邏輯的雙足軌跡生成算法[A];2004中國機器人足球比賽暨學(xué)術(shù)研討會論文集[C];2004年
相關(guān)博士學(xué)位論文 前1條
1 汪偉;機構(gòu)離散運動幾何學(xué)研究[D];大連理工大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 李英杰;雙向驅(qū)動型鏈輸送系統(tǒng)及樣機研究[D];天津理工大學(xué);2015年
2 桑凱;旋流器分選過程示蹤球設(shè)計及顆粒軌跡數(shù)值模擬研究[D];中國礦業(yè)大學(xué);2015年
3 曹梓遠;監(jiān)控視頻的異常行為檢測方法研究與軟件實現(xiàn)[D];電子科技大學(xué);2015年
4 畢菲;基于運動信息與背景信息相結(jié)合的視頻序列配準(zhǔn)[D];西安電子科技大學(xué);2014年
5 金時_g;內(nèi)埋式彈艙流場及武器投放軌跡研究[D];南京航空航天大學(xué);2014年
6 高朋;基于GPS的路網(wǎng)更新系統(tǒng)研究與實現(xiàn)[D];東南大學(xué);2015年
7 徐曉舟;面向飛艇平臺的視頻穩(wěn)像方法研究[D];清華大學(xué);2015年
8 陳棟;某產(chǎn)品姿態(tài)測量及參數(shù)解算研究[D];中北大學(xué);2016年
9 朱凌宏;新型偏心研磨方式研磨軌跡的仿真研究[D];浙江工業(yè)大學(xué);2011年
10 高祥;車聯(lián)網(wǎng)環(huán)境下信號交叉口通行方法研究[D];煙臺大學(xué);2016年
,本文編號:2282123
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2282123.html