機械球磨和熱擠壓制備超細晶5083鋁合金的微觀組織與力學(xué)性能研究
[Abstract]:5083 aluminum alloy is widely used in aircraft, automobile, ship, launching tower, drilling platform, armored vehicle and other fields because of its low density, high strength, good toughness and good corrosion resistance. Among them, fine-grained is to prepare materials with ultra-fine or nano-crystalline structure, which is a development direction to improve the performance of materials. At present, powder metallurgy method is one of the effective methods to prepare nano-crystalline/ultra-fine-grained materials. Bulk ultrafine grain 5083 aluminum alloy was prepared by extrusion. The microstructure of powder and bulk materials was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction and metallographic analysis. The mechanical properties, thermal stability and corrosion resistance of bulk materials were studied. 5083 aluminum alloy powders were prepared by mechanical milling at room temperature under inert gas atmosphere. TEM observation showed that the microstructure of 5083 aluminum alloy powders was composed of equiaxed and elongated grains, of which about 60% were equiaxed grains, 40% were elongated grains, and the grain size distribution ranged from 20 nm to 150 nm. The average grain size of #24-1 sample after hot isostatic pressing at 400 (# 24-1 sample) is 176 nm, and that of # 24-2 sample after hot isostatic pressing at 325 (# 24-2 sample) is 157 nm. After hot extrusion, the average grain size of # 24-1 sample is 371 nm and that of # 24-2 sample is 322 nm. In aluminium matrix, Scherrer method, integral width method and Voigt function method are used to calculate the grain size of A15083. Because the effect of micro-strain is not taken into account, the broadening of default diffraction peak is caused by grain refinement, and the calculated grain size is generally small. The integral width method is divided into Cauchy-Cauchy, Gaussian-Gauss method. Cauchy-Cauchy method assumes that grain refinement and micro-strain are close to Cauchy distribution, and the results are larger. Gaussian-Gaussian method assumes that grain refinement and micro-strain are close to Gauss distribution, and the results are too small. The strain effect is close to the Gaussian distribution, and the calculated results are closer to the TEM statistical results, so the grain size can be calculated effectively. The calculated results of each diffraction line in Voigt function method are different, depending on the selected diffraction line. 90 MPa, 497 MPa tensile strength, 8.7% elongation after fracture. # 24-2 samples yield strength of 560 MPa, tensile strength of 566 MPa, elongation after fracture of 6.3%, strength than the traditional 5083 aluminum alloy material has been greatly improved (about 60%). Fracture analysis shows that the fracture mode belongs to microporous aggregate fracture. The results show that the strengthening mechanisms include fine grain strengthening, dispersion strengthening, solid solution strengthening and dislocation strengthening, among which fine grain strengthening and dispersion strengthening are the main ones. The yield strength and tensile strength were 469 MPa and 472 MPa respectively, which were 4.3% and 5.0% lower than those before annealing. The hardness of #24-2 sample was 138.61 HV and 3.5% lower than that before annealing. The yield strength and tensile strength were 505 MPa and 511 MPa, respectively, which were 9.8% and 9.7% lower than those before annealing. The corrosion resistance of bulk ultrafine grain Al5083 samples was studied. The results showed that the main factors affecting the corrosion resistance were passivation film on metal surface, alloy elements and grain refinement.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.21;TG379
【相似文獻】
相關(guān)期刊論文 前10條
1 董傳勇;薛克敏;李琦;李萍;;高壓扭轉(zhuǎn)法制備粉末塊體超細晶材料[J];浙江科技學(xué)院學(xué)報;2009年03期
2 陸紅亞;李付國;汪程鵬;陳波;袁戰(zhàn)偉;;一種橢圓截面螺旋等通道擠壓制備超細晶材料的新工藝[J];鍛壓裝備與制造技術(shù);2011年04期
3 宋寶韞;付爾聰;運新兵;賀旭東;陳莉;;連續(xù)等通道角擠壓制備超細晶銅[J];有色金屬;2008年04期
4 石鳳健;王雷剛;蘆笙;;多軸壓縮工藝制備超細晶銅的研究[J];中國機械工程;2009年24期
5 王慶娟;王清平;杜忠澤;;等徑彎曲通道變形制備超細晶銅的力學(xué)行為[J];特種鑄造及有色合金;2011年10期
6 談軍;周張健;屈丹丹;鐘銘;葛昌純;;超細晶鎢及其復(fù)合材料的研究現(xiàn)狀[J];粉末冶金工業(yè);2012年03期
7 薛克敏;王曉溪;李萍;;超細晶材料制備新工藝——擠扭[J];塑性工程學(xué)報;2009年05期
8 王慶娟;徐長征;鄭茂盛;朱杰武;M.Buksa;L.Kunz;;等徑彎曲通道制備的超細晶銅的疲勞性能[J];金屬學(xué)報;2007年05期
9 杜予fE;張新明;;強變形制備超細晶金屬材料的方法[J];材料導(dǎo)報;2006年S2期
10 代秀芝;劉靖;韓靜濤;;超細晶銅帶材的制備及其力學(xué)性能研究[J];南方金屬;2006年06期
相關(guān)會議論文 前3條
1 杜隨更;王彥絨;;超細晶材料制備的磨擦壓扭強變形區(qū)轉(zhuǎn)移法[A];2002年材料科學(xué)與工程新進展(上)——2002年中國材料研討會論文集[C];2002年
2 索濤;李玉龍;謝奎;趙峰;;應(yīng)變率對超細晶銅韌性的影響[A];第六屆全國爆炸力學(xué)實驗技術(shù)學(xué)術(shù)會議論文集[C];2010年
3 史慶南;王效琪;鄭巍黎;;深度塑性加工(SPD)的進展和疊軋法(ARB)制備超細晶材料[A];中國空間科學(xué)學(xué)會空間材料專業(yè)委員會’2004學(xué)術(shù)交流會論文集[C];2004年
相關(guān)博士學(xué)位論文 前9條
1 丁然;超細晶Q&P鋼的組織控制及其演變規(guī)律[D];北京科技大學(xué);2016年
2 姜慶偉;超細晶純金屬材料塑性變形與損傷行為的溫度效應(yīng)[D];東北大學(xué);2011年
3 魏偉;塊體超細晶銅的制備與組織性能研究[D];南京理工大學(xué);2005年
4 鄒黎明;醫(yī)用超細晶TiNbZrTaFe復(fù)合材料的粉末冶金制備及其性能研究[D];華南理工大學(xué);2013年
5 姚再起;生物醫(yī)用超細晶鈦合金及其表面改性[D];大連理工大學(xué);2010年
6 王辛;粉末冶金超細晶AZ31鎂合金材料制備與力學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2013年
7 畢見強;2A12鋁塊體超細晶材料的制備、模擬及細化機制的研究[D];山東大學(xué);2005年
8 蘇靜;超細晶Cu的劇塑性流變行為及本構(gòu)理論[D];西北工業(yè)大學(xué);2015年
9 夏少華;微米晶/超細晶復(fù)合增塑及其機制研究[D];南京理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 黃小龍;粉末冶金超細晶Ti-6Al-4V合金的力學(xué)性能及變形局域化行為的研究[D];華南理工大學(xué);2015年
2 顧陽林;復(fù)雜應(yīng)力狀態(tài)下超細晶材料的力學(xué)性能研究[D];南京理工大學(xué);2015年
3 韋江濤;超細晶6061Al-Mg-Si鋁合金的力學(xué)性能和摩擦磨損行為[D];江蘇大學(xué);2016年
4 牛帥隆;超細晶純鎳的熱穩(wěn)定性研究[D];南京理工大學(xué);2016年
5 王晨曦;超細晶LZ91鎂鋰合金微壓印成形工藝研究[D];哈爾濱工業(yè)大學(xué);2016年
6 賈少偉;攪拌摩擦加工超細晶鎂合金組織與性能研究[D];西安建筑科技大學(xué);2016年
7 袁帥;考慮尺寸效應(yīng)的超細晶材料晶體塑性本構(gòu)建模及其有限元實現(xiàn)[D];廣西大學(xué);2016年
8 羅明歡;超細晶高強韌性低合金鋼顯微組織的形成機制[D];廣西大學(xué);2016年
9 陳菲菲;超細晶Cu-Al合金的高周疲勞性能研究[D];沈陽工業(yè)大學(xué);2017年
10 劉志波;超細晶Al-3.8Mg合金的微觀結(jié)構(gòu)與力學(xué)性能研究[D];燕山大學(xué);2016年
,本文編號:2251058
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2251058.html