金剛石涂層硬質(zhì)合金HfC-SiC過渡層制備及結(jié)合強(qiáng)度研究
[Abstract]:The coated cutting tools obtained by depositing diamond on the surface of carbide (WC-Co) cutter body by chemical vapor deposition can not only give full play to the advantages of high hardness, high wear resistance and high thermal conductivity of diamond, but also keep the characteristics of good toughness and high strength of cemented carbide, such as non-ferrous metals and their alloys, various particles or fiber reinforced composites. However, the low bonding strength between diamond coatings and cemented carbide matrix limits the application of diamond coated tools to a certain extent. There are two main reasons for the low bonding strength: one is the deposition process of Co in cemented carbide in diamond coatings. It can inhibit the nucleation of diamond and lead to the formation of graphite and amorphous carbon at the interface. Secondly, there are differences in hardness and thermal expansion coefficient (CTE) between diamond and cemented carbide, which lead to the thermal stress problem of the coating. SiC/HfC and HfC-SiC/HfC transition layers metallurgically bonded to cemented carbide substrate were prepared to reduce the negative catalytic effect of Co, adjust the thermal expansion coefficient of transition layer and improve the bonding strength of diamond coating. C/HfC is a double-layer gradient structure, mainly composed of HfC inner layer and HfC-SiC outer layer with gradient distribution of composition.In this paper, two new transition layer structures were obtained by optimizing and improving the DGPSA device. The bonding strength of typical transition layer structure to diamond coating was studied by phase analysis, microstructure characterization and performance testing. The main research contents and results are as follows: (1) the feasibility of fabricating SiC by DGPSA technology is explored. the gas flow field in DGPSA device is simulated and optimized by COMSOL software. the device is designed according to the simulation results. The experimental results show that the existing device can not realize the deposition of SiC even under the condition of high TMS flow rate. The main reason for the failure of SiC preparation is that the thermal shield blocks the reaction gas. It is possible to obtain uniform and high intensity gas flow field above the sample and in the plasma region by means of surface entry and simultaneous outflow of temperature observation holes and new outflow holes. However, the prepared SiC coating is not suitable for direct use as the transition layer of diamond-coated cemented carbide because of its poor compactness and bonding strength due to the influence of CO catalysis. (2) SiC / HFC double-layer transition layer was prepared on WC-Co cemented carbide substrate by using an improved DGPSA device with matrix temperature and TMS flow rate as variables, respectively. The surface and interface morphology, phase composition, hardness and bonding strength of the SiC / HFC double-layer transition layer were tested and analyzed, and the suitable structure, properties and preparation conditions of the SiC / HFC double-layer transition layer were discussed. Good. the transition layer prepared under these parameters can effectively prevent the diffusion of CO to the deposited surface, and can deposit dense and uniform nano-diamond coatings with high strength. the bonding strength of the coatings reaches hf_3 level. (3) on the basis of the research results (2), by increasing the TMS flow rate in the DGPSA process, in the way of hard bonding. HfC-SiC/HfC double-layer gradient transition layers were prepared on the diamond surface, and the effects of different flow rates on the composition, microstructure and properties of the transition layers were studied. The results show that the microstructure of HfC-SiC/HfC double-layer gradient transition layer is similar to that of SiC/HfC double-layer transition layer, but the interface transition between the inner and outer layers is good, and the HfC and SiC are gradient distributed in the outer layer. Compared with the diamond coating deposited on the HfC-SiC/HfC double-layer gradient transition layer, the diamond coating deposited on the HfC-SiC/HfC double-layer gradient transition layer has higher bond strength and lower thermal stress, which indicates that the HfC-Si C/HfC double-layer transition layer with gradient distribution of composition and property is an effective way to improve the bond strength of the diamond coating/cemented carbide system. Ways and means.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG174.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張建華;王福貞;翟東恒;王魯閩;;離子沉積的過渡層[J];新技術(shù)新工藝;1983年05期
2 陳霞,李杰訓(xùn),李東成;油水中間過渡層的預(yù)防及處理技術(shù)[J];油氣田地面工程;2002年05期
3 孫德超,柯黎明,邢麗,劉鴿平;陶瓷與金屬梯度過渡層的自蔓延高溫合成[J];焊接學(xué)報(bào);2000年03期
4 藺增;巴德純;;過渡層對含氫非晶碳膜生長的影響[J];真空科學(xué)與技術(shù)學(xué)報(bào);2006年06期
5 劉中青,史寶田;異種鋼焊接接頭過渡層影響因素的研究[J];吉林工學(xué)院學(xué)報(bào);1987年04期
6 張鵬展;沈明榮;徐俞;;二氧化鈦過渡層對脈沖激光沉積鈦酸鍶鋇薄膜微結(jié)構(gòu)和介電性質(zhì)的影響[J];功能材料與器件學(xué)報(bào);2008年06期
7 蘇革,聞立時(shí),成會(huì)明;金鋼石薄膜與基材之間過渡層技術(shù)的研究[J];材料科學(xué)與工藝;1998年04期
8 趙棟才;任妮;馬占吉;肖更竭;武生虎;;七種金屬基底上類金剛石膜的過渡層制備研究[J];真空科學(xué)與技術(shù)學(xué)報(bào);2008年04期
9 袁國洲;;粉末冶金航空剎車材料過渡層功能的研究[J];湖南冶金;1993年05期
10 茍小軍;高原文;;界面過渡層對磁-電-彈性層合板多場耦合特征的影響[J];功能材料;2012年14期
相關(guān)會(huì)議論文 前10條
1 王佳宇;呂憲義;孫越;白亦真;金曾孫;鄒廣田;;金剛石厚膜過渡層研究[A];第三屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1998年
2 吳行陽;大花繼賴;中村拳子;田中章浩;張建華;;梯度過渡層對非晶含氫碳膜性能的影響[A];2011年全國青年摩擦學(xué)與表面工程學(xué)術(shù)會(huì)議論文集[C];2011年
3 劉凡新;;硅過渡層厚度對超薄四面體碳膜結(jié)構(gòu)的影響[A];第十七屆全國光散射學(xué)術(shù)會(huì)議摘要文集[C];2013年
4 江南;張澤;孫碧武;;金剛石膜過渡層及其初始形核過程的TEM研究[A];第七次全國電子顯微學(xué)會(huì)議論文摘要集[C];1993年
5 孫喜蓮;徐學(xué)科;邵建達(dá);;鉻過渡層對銀膜的微結(jié)構(gòu)、光學(xué)性質(zhì)及附著力的影響[A];上海市激光學(xué)會(huì)2005年學(xué)術(shù)年會(huì)論文集[C];2005年
6 孫麗麗;代偉;張棟;汪愛英;;Cr摻雜及Cr過渡層對類金剛石薄膜附著力的影響[A];第八屆全國表面工程學(xué)術(shù)會(huì)議暨第三屆青年表面工程學(xué)術(shù)論壇論文集(五)[C];2010年
7 張迎肖;索紅莉;趙躍;劉敏;王榕;何東;周美玲;;在Ni5W基底上用MOD方法制備涂層導(dǎo)體過渡層的研究[A];2006年全國功能材料學(xué)術(shù)年會(huì)專輯[C];2006年
8 黃一鳴;吳行陽;鄧兆興;張建華;;不同射頻功率下基于多功率源梯度過渡層的摻硅非晶碳膜的制備及水潤滑性能[A];第十一屆全國摩擦學(xué)大會(huì)論文集[C];2013年
9 沈巖;全海濤;劉永慶;龐忠瑞;;采用過渡層焊接鑄鐵與低碳鋼[A];石油工程焊接技術(shù)交流研討會(huì)論文集[C];2005年
10 譚紅琳;王雪雯;;GaAs與Si之間過渡層的設(shè)計(jì)及其分析[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅱ[C];2004年
相關(guān)博士學(xué)位論文 前6條
1 任毅;低溫合成碳化物過渡層對金剛石膜生長的作用機(jī)理研究[D];中國地質(zhì)大學(xué)(北京);2016年
2 孫瑞;氮摻雜氧化鎵薄膜為過渡層制備氮化鎵納米線及其探測器[D];哈爾濱工業(yè)大學(xué);2015年
3 高潔;金剛石涂層硬質(zhì)合金HfC-SiC過渡層制備及結(jié)合強(qiáng)度研究[D];太原理工大學(xué);2017年
4 陳丹;六鋁酸鹽—氧化鋁復(fù)合過渡層的原位制備及其粘附性能研究[D];天津大學(xué);2014年
5 弋曉明;基于土基耐久性的路基與半剛性基層間的過渡層研究[D];山東大學(xué);2014年
6 崔蓮;表面過渡層對鐵電薄膜介電性質(zhì)的影響[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 董運(yùn)超;過渡層對PET基SiO_2薄膜結(jié)合強(qiáng)度的影響[D];湖南工業(yè)大學(xué);2015年
2 趙洋;擴(kuò)散多元節(jié)技術(shù)在Cu-Ni-Sn彈性銅合金中的應(yīng)用研究[D];北京有色金屬研究總院;2015年
3 趙希安;易碳化過渡層對碳基硬質(zhì)薄膜結(jié)構(gòu)和性能的影響[D];中國地質(zhì)大學(xué)(北京);2015年
4 馬奔馳;Sn/Al界面Al_2O_3過渡層形成機(jī)理及對界面結(jié)合強(qiáng)度的影響[D];哈爾濱工業(yè)大學(xué);2015年
5 任程;化學(xué)溶液法制備La_2Zr_2O_7過渡層厚膜及取向的研究[D];北京工業(yè)大學(xué);2015年
6 高雪艷;Mo基過渡層硬質(zhì)合金金剛石涂層的制備研究[D];太原理工大學(xué);2016年
7 姚紅偉;界面過渡層構(gòu)筑及其對碳纖維復(fù)合材料界面、抗疲勞性能的影響[D];天津工業(yè)大學(xué);2016年
8 王超;銅—鋁兩相材料固液成型的分子動(dòng)力學(xué)模擬[D];華中科技大學(xué);2015年
9 邵家霖;過渡層在鋁/鋼攪拌摩擦釬焊中的作用[D];蘭州理工大學(xué);2014年
10 張浩;離心自蔓延復(fù)合管金屬過渡層微觀結(jié)構(gòu)及力學(xué)性能研究[D];太原理工大學(xué);2006年
,本文編號(hào):2237504
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2237504.html