離子液體緩蝕劑緩蝕機理的理論研究
[Abstract]:Metal corrosion is common in the fields of national economy, national defense construction, science and technology, and its harm is very serious, so it is necessary to take some protective measures. As a simple and effective additive, corrosion inhibitor has become the most commonly used anticorrosion method. Ionic liquids have been used as potential corrosion inhibitors because of their heterocyclic structure, heteroatoms (such as Nu OS) and multiplex bonds, and have been used in the field of metal corrosion protection. A lot of progress has been made in recent years, but at present, the research of ionic liquid corrosion inhibitor is mainly focused on the corrosion inhibition performance and efficiency, and the microscopic mechanism of the inhibition process is less studied. In this paper, three systems (1-alkyl-3-methylimidazole [XMIM] [C1] system) of 1-alkyl-3-methyl imidazole acetate [XMIM] [Ac] and 1-octyl -3-methyl imidazolium salt [OMIM] [Y] system, in which X is ethyl, Ding Ji, Eleven kinds of ionic liquids, hexyl and octyl (Cl,BF4,HS04,Ac and TfO), were used to inhibit corrosion of low carbon steel. The electronic structure and reaction activity of ionic liquids, surface energy and electronic structure of iron surface were systematically analyzed by quantum chemical calculation. The adsorption behavior of ionic liquids on iron surface was studied by molecular dynamics simulation, and the microscopic mechanism of corrosion inhibition process was revealed. The results are as follows: it is found that for [XMIM] [C1] and [XMIM] [Ac] systems with different cations of the same anion, with the increase of alkyl chain length, the maximum occupied orbital energy, (EHOMO), and the lowest orbital energy, (ELUMO), softness (5) and polarizability (偽), increase gradually. The energy gap difference (E), dipole moment 渭), hardness (畏) and electrophilic index (蠅) decreased gradually. The quantum chemical parameters of ionic liquids vary greatly in the same cationic [OMIM] [Y] system. Only the polarizability (偽) tends to increase. The order of surface energy 緯 of Fe (100) Fe (110) and Fe (111) surfaces is 緯 Fe (111) 緯 Fe (100) 緯 Fe (110), which indicates that the structure of Fe (110) surface is the most compact and stable. The 3D orbital on iron surface is most active. Fe (110) is easy to interact with not only the anion containing oxygen but also the imidazole ring of ionic liquid cationic. Therefore, the Fe (110) surface is selected as the adsorption surface of ionic liquids. The results show that for [XMIM] [C1] system, the inhibition efficiency is mainly cationic [XMIM], and the order of inhibition efficiency is [OMIM] [Cl] [HMIM] [BMIM] [C1] [EMIM] [C1] [EMIM] [C1]. [XMIM] [Ac] the order of inhibition efficiency is [OMIM] [Ac] [HMIM] [Ac] [BMIM] [Ac] [EMIM] [EMIM] [Ac]. The order of inhibition efficiency is [OMIM] [Ac] [HMIM] [Ac] [BMIM] [Ac] [EMIM] [EMIM] [Ac]. In [OMIM] [Y] system, both cation [XMIM] and anionic BF4-,HSO4-,Ac-,TfO- can inhibit corrosion. The order of inhibition efficiency is [OMIM] [TfO] [OMIM] [Ac] [OMIM] [HS04] [OMIM] [BF4] [OMIM] [C1]. In either system, cationic or anion ions of ionic liquids are adsorbed and covered on the surface of Fe (110) to form a protective film, which hinders the interaction between the corrosion medium (H _ 2O _ H _ 3O _ 3O _ (Cl-) and the metal surface in order to achieve the purpose of corrosion inhibition. In conclusion, [OMIM] [TfO] is the best corrosion inhibitor in 11 ionic liquids studied.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG174.42
【參考文獻】
相關期刊論文 前9條
1 王彩云;;金屬腐蝕的危害及防護[J];機械管理開發(fā);2012年05期
2 陳建華;王進明;龍賢灝;郭進;;硫化銅礦物電子結構的第一性原理研究[J];中南大學學報(自然科學版);2011年12期
3 張文謙;蔡邦宏;;金屬腐蝕與防護的理論和方法[J];內江科技;2011年03期
4 張啟波;華一新;;咪唑離子液體對銅在硫酸溶液中的緩蝕作用(英文)[J];物理化學學報;2011年03期
5 趙巍;汪家道;劉峰斌;陳大融;;H_2O分子在Fe(100),Fe(110),Fe(111)表面吸附的第一性原理研究[J];物理學報;2009年05期
6 陶琦;李芬芳;邢健敏;;金屬腐蝕及其防護措施的研究進展[J];湖南有色金屬;2007年02期
7 葛紅花;汪洋;周國定;李新學;;普及金屬腐蝕與防護知識重要性的研究[J];上海電力學院學報;2007年01期
8 王鵬;王大喜;高金森;董坤;徐春明;劉靖疆;;三氯化鋁烷基氯化咪唑鹽結構和紅外光譜的模擬計算[J];高等學校化學學報;2006年08期
9 張芳英,滕英元,張美霞,朱圣龍;Al(001)、Al(110)、Al(111)面表面能的密度泛函理論計算[J];腐蝕科學與防護技術;2005年01期
相關博士學位論文 前7條
1 曾建平;無磷阻垢緩蝕劑的分子動力學模擬研究[D];南京理工大學;2013年
2 陳國浩;二氧化碳腐蝕體系緩蝕劑的緩蝕機理及緩蝕協(xié)同效應研究[D];北京化工大學;2012年
3 李雪梅;醇胺離子液體—醇—水體系相平衡的測定與過程模擬[D];北京化工大學;2012年
4 胡曉東;離子液體的電致驅動及變焦離子液體透鏡的研究[D];蘭州大學;2012年
5 鮑少華;新型酸功能化離子液體的制備及其在有機合成中的應用[D];華東師范大學;2012年
6 王彬;油氣田用抑制CO_2腐蝕的咪唑啉類緩蝕劑的緩蝕行為研究[D];中國海洋大學;2011年
7 劉一男;1,,2-萘醌-1-肟銠含氯配合物合成及量子化學計算[D];東北大學;2010年
相關碩士學位論文 前5條
1 李東旭;鋁和鐵表面自擴散的分子動力研究[D];廣西大學;2015年
2 王丁;有機分子對離子液體結構與性質的影響研究[D];昆明理工大學;2013年
3 蘇現(xiàn)想;室溫離子液體與水相互作用的理論研究[D];昆明理工大學;2012年
4 萬小波;Materials Studio計算金屬表面能及在電鍍中的應用[D];電子科技大學;2011年
5 王豆豆;晶體表面結構及能量各向異性的理論分析[D];陜西師范大學;2007年
本文編號:2231051
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2231051.html